134 research outputs found

    Telepsychotherapy with children and families: Lessons gleaned from two decades of translational research

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Psychological Association via the DOI in this recordThe novel coronavirus, COVID-19, has led to sweeping changes in psychological practice and the concomitant rapid uptake of telepsychotherapy. Although telepsychotherapy is new to many clinical psychologists, there is considerable research on telepsychotherapy treatments. Nearly two decades of clinical research on telepsychotherapy treatments with children with neurological conditions has the potential to inform emerging clinical practice in the age of COVID-19. Toward that end, we synthesized findings from 14 clinical trials of telepsychotherapy problemsolving and parent training interventions involving more than 800 children and families with diverse diagnoses including traumatic brain injury, epilepsy, brain tumors, congenital heart disease, and perinatal stroke. We summarize efficacy across studies and clinical populations and report feasibility and acceptability data from the perspectives of parents, children, and therapists. We describe adaptation for international contexts and strategies for troubleshooting technological challenges and working with families of varying socioeconomic strata. The extensive research literature reviewed and synthesized provides considerable support for the utility of telepsychotherapy with children with neurological conditions and their families and underscores its high level of acceptability with both diverse clinical populations and providers. During this period of heightened vulnerability and stress and reduced access to usual supports and services, telepsychotherapy approaches such as online family problem-solving treatment and online parenting skills training may allow psychologists to deliver traditional evidence-based treatments virtually while preserving fidelity and efficacyNational Institute for Health Research (NIHR

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.

    Get PDF
    Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields

    Activation of JNK Signaling Mediates Amyloid-ß-Dependent Cell Death

    Get PDF
    Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood.We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that blocking caspase-dependent cell death initially blocked cell death but did not lead to a significant rescue in the adult eye. However, blocking the levels of c-Jun NH(2)-terminal kinase (JNK) signaling pathway significantly rescued the neurodegeneration phenotype of Aß42 misexpression both in eye imaginal disc as well as the adult eye. Misexpression of Aß42 induced transcriptional upregulation of puckered (puc), a downstream target and functional read out of JNK signaling. Moreover, a three-fold increase in phospho-Jun (activated Jun) protein levels was seen in Aß42 retina as compared to the wild-type retina. When we blocked both caspases and JNK signaling simultaneously in the fly retina, the rescue of the neurodegenerative phenotype is comparable to that caused by blocking JNK signaling pathway alone.Our data suggests that (i) accumulation of Aß42 plaques induces JNK signaling in neurons and (ii) induction of JNK contributes to Aß42 mediated cell death. Therefore, inappropriate JNK activation may indeed be relevant to the AD neuropathology, thus making JNK a key target for AD therapies

    Understanding barriers for research involvement among paediatric trainees: a mixed methods study

    Get PDF
    Background: Child Health research is reported to be at worryingly low level by the Royal College of Paediatrics and Child Health. Recent survey showed that 54.5% of paediatric consultants in the United Kingdom do not do any research at all. We conducted a mixed methods study to understand barriers and facilitators for research involvement among paediatric trainees who are going to fill these consultant posts in the future. Methods: A questionnaire based on a validated index for research and development was completed by 136 paediatric trainees within a region in the North of England (Yorkshire and Humber). Twelve semi-structured interviews were conducted with stratified purposive sampling. Descriptive statistics and Chi-Square test for independence were used for quantitative analysis. Thematic content analysis was done for interviews based on analysis method framework. Results: 136 out of 396 trainees responded to the survey. There was a significant relationship between confidence in using research in practice and ability to understand research terminology. This was not related to research experience or training. Males were significantly more likely to have presented a research paper, know how research influences practice and have more confidence in using research in practice than females. There was no significant relationship between gender and research training or highest qualification. Time constraints and lack of academic culture were the most frequently mentioned barriers in the survey. Over-arching themes identified from the interviews were related to lack of academic culture, opportunities provided in current training scheme and constraints related to time availability along with workforce management. Conclusion: Paediatric research requires a supportive academic culture with more flexibility in training scheme and immediate attention to a pressing staffing crisis

    Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells

    Full text link
    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival
    corecore