2,172 research outputs found

    Simulations and symmetries

    Get PDF
    We investigate the range of applicability of a model for the real-space power spectrum based on N-body dynamics and a (quadratic) Lagrangian bias expansion. This combination uses the highly accurate particle displacements that can be efficiently achieved by modern N-body methods with a symmetries-based bias expansion which describes the clustering of any tracer on large scales.We showthat at lowredshifts, and formoderately biased tracers, the substitution of N-body-determined dynamics improves over an equivalent model using perturbation theory by more than a factor of two in scale, while at high redshifts and for highly biased tracers the gains are more modest. This hybrid approach lends itself well to emulation. By removing the need to identify haloes and subhaloes, and by not requiring any galaxy-formation-related parameters to be included, the emulation task is significantly simplified at the cost ofmodelling a more limited range in scale. 2020 The Author(s)

    Reconstructing large-scale structure with neutral hydrogen surveys

    Get PDF
    Upcoming 21-cm intensity surveys will use the hyperfine transition in emission to map out neutral hydrogen in large volumes of the universe. Unfortunately, large spatial scales are completely contaminated with spectrally smooth astrophysical foregrounds which are orders of magnitude brighter than the signal. This contamination also leaks into smaller radial and angular modes to form a foreground wedge, further limiting the usefulness of 21-cm observations for different science cases, especially cross-correlations with tracers that have wide kernels in the radial direction. In this paper, we investigate reconstructing these modes within a forward modeling framework. Starting with an initial density field, a suitable bias parameterization and non-linear dynamics to model the observed 21-cm field, our reconstruction proceeds by {combining} the likelihood of a forward simulation to match the observations (under given modeling error and a data noise model) {with the Gaussian prior on initial conditions and maximizing the obtained posterior}. For redshifts z=2 and 4, we are able to reconstruct 21cm field with cross correlation, rc > 0.8 on all scales for both our optimistic and pessimistic assumptions about foreground contamination and for different levels of thermal noise. The performance deteriorates slightly at z=6. The large-scale line-of-sight modes are reconstructed almost perfectly. We demonstrate how our method also provides a technique for density field reconstruction for baryon acoustic oscillations, outperforming standard methods on all scales. We also describe how our reconstructed field can provide superb clustering redshift estimation at high redshifts, where it is otherwise extremely difficult to obtain dense spectroscopic samples, as well as open up a wealth of cross-correlation opportunities with projected fields (e.g. lensing) which are restricted to modes transverse to the line of sight

    Positivity in the presence of initial system-environment correlation

    Get PDF
    The constraints imposed by the initial system-environment correlation can lead to nonpositive Dynamical maps. We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical map depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the role of this interplay in Markovian models.Comment: close to the published version. 5 pages, 1 figur

    Foundations of Quantum Discord

    Full text link
    This paper summarizes the basics of the notion of quantum discord and how it relates to other types of correlations in quantum physics. We take the fundamental information theoretic approach and illustrate our exposition with a number of simple examples.Comment: 3 pages, special issue edited by Diogo de Oliveira Soares Pinto et a

    Quantum Correlations in Multipartite Quantum Systems

    Full text link
    We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlationsComment: to be published as a chapter of the book "Lectures on general quantum correlations and their applications" edited by F. Fanchini, D. Soares-Pinto, and G. Adesso (Springer, 2017

    How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    Full text link
    We study the effects of preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well know dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures, stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to non-linear processes, and can only be consistently described by a bi-linear process map. A new process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bi-linear processes. We also emphasize the preparation procedure will have a non-trivial effect for any quantum experiment in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.

    Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts

    Get PDF
    Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented

    Dissipative dynamics of quantum discord under quantum chaotic environment

    Full text link
    We investigate the dissipative dynamics of quantum discord in a decoherence model with two initially entangled qubits in addition to a quantum kicked top. The two qubits are uncoupled during the period of our study and one of them interacts with the quantum kicked top. We find that the long time behavior of quantum discord could be well described by the fidelity decay of the quantum kicked top; for short time behavior, however, the phase of the amplitude of the fidelity decay is necessary to provide more specific information about the system. We have made comparison between the quantum kicked top and multi-mode oscillator system in describing environment, and also compared the dynamics of the entanglement with that of quantum discord.Comment: 5 pages, 3 figures, and Accepted by Europhysics Letter
    corecore