45 research outputs found
Seedlings Lacking the PTM Protein Do Not Show a genomes uncoupled (gun) Mutant Phenotype.
The ptm mutant of Arabidopsis does not show a genomes uncoupled mutant phenotype and PTM is therefore unlikely to function in chloroplast-to-nucleus signaling as previously reported
Vascular Endothelial Adrenomedullin-RAMP2 System Is Essential for Vascular Integrity and Organ Homeostasis
信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第935号)・小山 晃英Background-Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. Methods and Results-We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. Conclusions-Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage. (Circulation. 2013;127:842-853.)ArticleCIRCULATION. 127(7):842-853 (2013)journal articl
Polycystic Kidney Disease in the Medaka (Oryzias latipes) pc Mutant Caused by a Mutation in the Gli-Similar3 (glis3) Gene
Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients
Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP
CHLH/GUN5 function in tetrapyrrole metabolism is correlated with plastid signaling but not ABA responses in guard cells
Expression of Photosynthesis-Associated Nuclear Genes (PhANGs) is controlled by environmental stimuli and plastid-derived signals ("plastid signals") transmitting the developmental and functional status of plastids to the nucleus. Arabidopsis genomes uncoupled (gun) mutants exhibit defects in plastid signaling, leading to ectopic expression of PhANGs in the absence of chloroplast development. GUN5 encodes the plastid-localized Mg-chelatase enzyme subunit (CHLH), and recent studies suggest that CHLH is a multifunctional protein involved in tetrapyrrole biosynthesis, plastid signaling and ABA responses in guard cells. To understand the basis of CHLH multifunctionality, we investigated 15 gun5 missense mutant alleles and transgenic lines expressing a series of truncated CHLH proteins in a severe gun5 allele (cch) background (tCHLHs, 10 different versions). Here, we show that Mg-chelatase function and plastid signaling are generally correlated; in contrast, based on the analysis of the gun5 missense mutant alleles, ABA-regulated stomatal control is distinct from these two other functions. We found that none of the tCHLHs could restore plastid-signaling or Mg-chelatase functions. Additionally, we found that both the C-terminal half and N-terminal half of CHLH function in ABA-induced stomatal movement
CRYPTOCHROME2 in Vascular Bundles Regulates Flowering in Arabidopsis
Plants make full use of light signals to determine the timing of flowering. In Arabidopsis thaliana, a blue/UV-A photoreceptor, CRYPTOCHROME 2 (cry2), and a red/far-red photoreceptor, PHYTOCHROME B (phyB), are two major photoreceptors that control flowering. The light stimuli for the regulation of flowering are perceived by leaves. We have recently shown that phyB expression in mesophyll but not in vascular bundles suppresses the expression of a key flowering regulator, FLOWERING LOCUS T (FT), in vascular bundles. In this study, we asked where in the leaf cry2 perceives light stimuli to regulate flowering. To answer this question, we established transgenic Arabidopsis lines in which the cry2–green fluorescent protein (GFP) fusion was expressed under the control of organ/tissue-specific promoters in a cry2-deficient mutant background. Analysis of these lines revealed that expression of cry2-GFP in vascular bundles, but not in epidermis or mesophyll, rescued the late flowering phenotype. We further confirmed that cry2-GFP expressed in vascular bundles increased FT expression only in vascular bundles. Hence, in striking contrast with phyB, cry2 most likely regulates FT expression in a cell-autonomous manner
Phytochrome B in the Mesophyll Delays Flowering by Suppressing FLOWERING LOCUS T Expression in Arabidopsis Vascular Bundles
Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses, including stem elongation and the acceleration of flowering. Phytochrome B (phyB) acts as a photoreceptor for this response. Physiological studies have suggested that leaves can perceive and respond to shade. However, little is known about the mechanisms involved in the processing of light signals within leaves. In this study, we used an enhancer-trap system to establish Arabidopsis thaliana transgenic lines that express phyB–green fluorescent protein (GFP) fusion protein in tissue-specific manners. The analysis of these lines demonstrated that phyB-GFP in mesophyll cells affected flowering, whereas phyB-GFP in vascular bundles did not. Furthermore, mesophyll phyB-GFP suppressed the expression of a key flowering regulator, FLOWERING LOCUS T, in the vascular bundles of cotyledons. Hence, a novel intertissue signaling from mesophyll to vascular bundles is revealed as a critical step for the regulation of flowering by phyB
Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells
Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1) and null (fc1-2) mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1) and null (fc2-2) mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions