539 research outputs found

    The Near-Infrared Number Counts and Luminosity Functions of Local Galaxies

    Get PDF
    This study presents a wide-field near-infrared (K-band) survey in two fields; SA 68 and Lynx 2. The survey covers an area of 0.6 deg.2^2, complete to K=16.5. A total of 867 galaxies are detected in this survey of which 175 have available redshifts. The near-infrared number counts to K=16.5 mag. are estimated from the complete photometric survey and are found to be in close agreement with other available studies. The sample is corrected for incompleteness in redshift space, using selection function in the form of a Fermi-Dirac distribution. This is then used to estimate the local near-infrared luminosity function of galaxies. A Schechter fit to the infrared data gives: MK∗=−25.1±0.3^\ast_K = -25.1 \pm 0.3, α=−1.3±0.2\alpha = -1.3\pm 0.2 and ϕ∗=(1.5±0.5)×10−3\phi^\ast =(1.5\pm 0.5)\times 10^{-3} Mpc−3^{-3} (for H0=50_0=50 Km/sec/Mpc and q0=0.5_0=0.5). When reduced to α=−1\alpha=-1, this agrees with other available estimates of the local IRLF. We find a steeper slope for the faint-end of the infrared luminosity function when compared to previous studies. This is interpreted as due to the presence of a population of faint but evolved (metal rich) galaxies in the local Universe. However, it is not from the same population as the faint blue galaxies found in the optical surveys. The characteristic magnitude (MK∗M^\ast_K) of the local IRLF indicates that the bright red galaxies (MK∌−27M_K\sim -27 mag.) have a space density of ≀5×10−5\le 5\times 10^{-5} Mpc−3^{-3} and hence, are not likely to be local objects.Comment: 24 pages, 8 figures, AASTEX 4.0, published in ApJ 492, 45

    Structural evolution of an alkali sulfate activated slag cement

    Get PDF
    In this study, the effect of sodium sulfate content and curing duration (from fresh paste up to 18 months) on the binder structure of sodium sulfate activated slag cements was evaluated. Isothermal calorimetry results showed an induction period spanning the first three days after mixing, followed by an acceleration-deceleration peak corresponding to the formation of bulk reaction products. Ettringite, a calcium aluminium silicate hydrate (C-A-S-H) phase, and a hydrotalcite-like Mg-Al layered double hydroxide have been identified as the main reaction products, independent of the Na2SO4 dose. No changes in the phase assemblage were detected in the samples with curing from 1 month up to 18 months, indicating a stable binder structure. The most significant changes upon curing at advanced ages observed were growth of the AFt phase and an increase in silicate chain length in the C-A-S-H, resulting in higher strength

    Selection of high-z supernovae candidates

    Get PDF
    Deep, ground based, optical wide-field supernova searches are capable of detecting a large number of supernovae over a broad redshift range up to z~1.5. While it is practically unfeasible to obtain spectroscopic redshifts of all the supernova candidates right after the discovery, we show that the magnitudes and colors of the host galaxies, as well as the supernovae, can be used to select high-z supernova candidates, for subsequent spectroscopic and photometric follow-up. Using Monte-Carlo simulations we construct criteria for selecting galaxies in well-defined redshift bands. For example, with a selection criteria using B-R and R-I colors we are able to pick out potential host galaxies for which z>0.85 with 80% confidence level and with a selection efficiency of 64-86%. The method was successfully tested using real observations from the HDF. Similarly, we show that that the magnitude and colors of the supernova discovery data can be used to constrain the redshift. With a set of cuts based on V-R and R-I in a search to m_I~25, supernovae at z~1 can be selected in a redshift interval sigma_z <0.15.Comment: 33 pages, 13 figures, accepted for publication in PASP (March 2002 issue

    A near infrared photometric plane for ellipticals and bulges of spirals

    Full text link
    We report the existence of a single plane in the space of global photometric parameters describing elliptical galaxies and the bulges of early type spiral galaxies. The three parameters which define the plane are obtained by fitting the Sersic form to the brightness distribution obtained from near-infrared K band images. We find, from the range covered by their shape parameters, that the elliptical galaxies form a more homogeneous population than the bulges. Known correlations like the Kormendy relation are projections of the photometric plane. The existence of the plane has interesting implications for bulge formation models.Comment: 12 pages, LaTeX including 5 figures. To appear in the Astrophysical Journal Letter

    Direct evidence for an early reionization of the Universe?

    Full text link
    We examine the possible reionization of the intergalactic medium (IGM) by the source UDF033238.7-274839.8 (hereafter HUDF-JD2), which was discovered in deep {\it HST}/VLT/{\it Spitzer} images obtained as part of the Great Observatory Origins Deep Survey and {\it Hubble} Ultra-Deep Field projects. Mobasher et al (2005) have identified HUDF-JD2 as a massive (∌6×1011M⊙\sim6\times10^{11}M_\odot) post-starburst galaxy at redshift z≳6.5\gtrsim6.5. We find that HUDF-JD2 may be capable of reionizing its surrounding region of the Universe, starting the process at a redshift as high as z≈15±5\approx 15 \pm5.Comment: 6 pages, 2 figures. Accepted for publication in ApJ Letter

    Newcomers Meet the Intracluster Medium in the Coma Cluster

    Full text link
    A main topic at this meeting is how galaxies are affected when they enter for the first time the cluster environment from the outskirts. Most of the times we are forced to infer the environmental effects indirectly, relying on systematic variations of galaxy properties with environment, but there aren't many examples of direct observations able to unveil ongoing transformations taking place, and the corresponding mechanism producing it. We present a case in which it is possible to identify the cluster environment, and in particular the intracluster medium and the recent infall history of galaxies onto the cluster, as the cause for a recent, abrupt change in the evolutionary history of galaxies.Comment: 5 pages, 1 postscript figure -- to appear in "Outskirts of Galaxy Clusters: intense life in the suburbs", IAU Colloquium N. 195, 2004, ed. A Diaferi

    Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    Get PDF
    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M_UV = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha = -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of ~ -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M_UV ~ -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M*=10^8 Msun. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.Comment: accepted for publication in Ap

    Diffuse Extragalactic Background Light versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe?

    Full text link
    Deep optical and near-infrared galaxy counts are utilized to estimate the extragalactic background light (EBL) coming from normal galactic light in the universe. Although the slope of number-magnitude relation of the faintest counts is flat enough for the count integration to converge, considerable fraction of EBL from galaxies could still have been missed in deep galaxy surveys because of various selection effects including the cosmological dimming of surface brightness of galaxies. Here we give an estimate of EBL from galaxy counts, in which these selection effects are quantitatively taken into account for the first time, based on reasonable models of galaxy evolution which are consistent with all available data of galaxy counts, size, and redshift distributions. We show that the EBL from galaxies is best resolved into discrete galaxies in the near-infrared bands (J, K) by using the latest data of the Subaru Deep Field; more than 80-90% of EBL from galaxies has been resolved in these bands. Our result indicates that the contribution by missing galaxies cannot account for the discrepancy between the count integration and recent tentative detections of diffuse EBL in the K-band (2.2 micron), and there may be a very diffuse component of EBL which has left no imprints in known galaxy populations.Comment: ApJ Letters in press. Two new reports on the diffuse EBL at 1.25 and 2.2 microns are added to the reference list and Table

    The nature of the faint galaxies in the Hubble Deep Field

    Full text link
    We present a study of the galaxies found in the Hubble Deep Field. A high proportion of HDF galaxies are undergoing a strong episode of star formation, as evidenced by their very blue colours. A wide range of morphological types is found, with a high proportion of peculiar and merger morphologies. Fitting the multiband spectra with redshifted SEDs of galaxy types E to HII, we predict the spectral types and redshifts of galaxies detected in the HDF. We find a median redshift of 1.6, with 68%68\% having z>1z > 1 and 31%31\% with z>2z >2. The I-band absolute magnitude distributions as a function of galaxy types show a plausible trend of decreasing luminosity towards later types. The derived I-band luminosity function agrees well with that from the Canada-France survey (Lilly et al 1996) for z<1z < 1 and shows strong luminosity evolution at MI<−21M_I < -21 for 1<z<31 < z < 3, comparable to the rate seen in quasars and starburst galaxies. We have predicted infrared and submillimetre fluxes assuming most of the galaxies are undergoing a strong starburst. Several planned space-borne and ground-based deep surveys are capable of detecting interesting numbers of HDF galaxies.Comment: 10 Pages, including diagram
    • 

    corecore