125 research outputs found

    Radical addition–fragmentation chemistry in polymer synthesis

    Get PDF
    AbstractThis review traces the development of addition–fragmentation chain transfer agents and related ring-opening monomers highlighting recent innovation in these areas. The major part of this review deals with reagents that give reversible addition–fragmentation chain transfer (RAFT). These reagents include dithioesters, trithiocarbonates, dithiocarbamates and xanthates. The RAFT process is a versatile method for conferring living characteristics on radical polymerizations providing unprecedented control over molecular weight, molecular weight distribution, composition and architecture. It is suitable for most monomers polymerizable by radical polymerization and is robust under a wide range of reaction conditions. It provides a route to functional polymers, cyclopolymers, gradient copolymers, block polymers and star polymers

    The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers

    Get PDF
    This is an accepted manuscript of an article published by Royal Society of Chemistry in Polymer Chemistry on 30/04/2012, available online: https://doi.org/10.1039/C3PY00487B The accepted version of the publication may differ from the final published version.The use of various RAFT agents (ZC(S)SR) including dithiobenzoates (Z = Ph), trithiocarbonates (Z = SR′), xanthates (Z = OR′), and conventional and switchable N-aryldithiocarbamates (Z = NR′Ar) in RAFT polymerization of N-vinylcarbazole (NVC) has been explored with a view to establishing which is most effective. Consistent with earlier work, we find that xanthates and N-aryldithiocarbamates give adequate control (dispersities < 1.3) while dithiobenzoates give marked retardation. However, contrary to popular belief, we find that the polymerization of NVC is best controlled with trithiocarbonate RAFT agents, which provide both good molecular weight control, very narrow dispersities (1.1), and high end-group fidelity. The results demonstrate that NVC has intermediate reactivity, i.e. between that of the traditional more activated (MAMs; styrene, acrylates) and less activated monomers (LAMs; vinyl acetate, N-vinylpyrrolidone). A further key to good control is the selection of RAFT agent R substituent to be both a good leaving group and a good initiating radical. The cyanomethyl group meets these criteria whereas phenylethyl is a poor initiating radical for NVC polymerization. A further demonstration of the intermediate reactivity of NVC and the derived propagating radical was the successful preparation of both poly(n-butyl acrylate)-block-poly(N-vinylcarbazole) and poly(N-vinylcarbazole)-block-poly(n- butyl acrylate) with a trithiocarbonate RAFT agent (the sequence of block synthesis is not important). Two-dimensional, liquid chromatography near critical conditions-gel permeation chromatography (LCCC-GPC) has been applied to demonstrate block purity. The corresponding styrene-based blocks can also be successfully synthesized, however, the reinitiation of NVC polymerization by the polystyryl radical proved to be a constraint on the purity of polystyrene-block-poly(N-vinylcarbazole). © 2013 The Royal Society of Chemistry.The authors gratefully acknowledge the Capability Development Fund of CSIRO Materials Science and Engineering for financial support. D.J.K. acknowledges the Office of the Chief Executive of CSIRO for an OCE postdoctoral fellowship and the School of Science and Technology at the University of New England for a start-up grant.Published versio

    Exploitation of compartmentalization in RAFT miniemulsion polymerization to increase the degree of livingness

    Get PDF
    It is demonstrated that the degree of livingness (chain-end fidelity) in RAFT polymerization for a given degree of polymerization can be markedly increased in miniemulsion polymerization relative to the corresponding homogeneous bulk system. Polymerization of styrene was conducted using a poly(methyl methacrylate) benzodithioate as macroRAFT agent in both miniemulsion and bulk. The substantially higher polymerization rate in miniemulsion, which is attributed to the segregation effect (compartmentalization) causing a reduction in the rate of bimolecular termination, makes it possible to reach a given degree of polymerization in a significantly shorter time than in the corresponding bulk system. As a consequence, fewer initiating radicals are required throughout the polymerization, leading to higher livingness in the more rapid miniemulsion system. It is demonstrated how this approach facilitates synthesis of high molecular weight block copolymers comprising slowly propagating monomers such as styrene and methacrylates

    Effect of scandium triflate on the RAFT copolymerization of methyl acrylate and vinyl acetate controlled by an acid/base “switchable” chain transfer agent

    Get PDF
    Modulation of the activity of an acid/base switchable dithiocarbamate RAFT agent, cyanomethyl (4-fluorophenyl)(pyridin-4-yl)carbamodithioate, with the Lewis acid scandium triflate (Sc(OTf)3) was investigated to examine the ability to deliver improved control over RAFT copolymerizations involving both more-activated and less-activated monomers—specifically the copolymerization of methyl acrylate (MA) and vinyl acetate (VAc). The introduction of either 0.5 or 1 mol equiv of Sc(OTf)3, with respect to RAFT agent, into a RAFT copolymerization of MA and VAc provides substantially improved control resulting in significantly reduced molar mass dispersities (Đ) (∼1.1–1.3) than achieved in its absence (Đ ∼ 1.3–1.4). Furthermore, similar introduction of Sc(OTf)3 into MA homopolymerization mediated by the same RAFT agent also delivered polymers of very low Đ (∼1.15). Sc(OTf)3 was also found to lower the rate of polymerization and alter the copolymerization reactivity ratios for MA and VAc. Increasing the Lewis acid concentration provides enhanced incorporation of the less active monomer, VAc, into the copolymers ([Sc(OTf)3]/[RAFT] = 0, rMA = 4.04, rVAc = 0.032; [Sc(OTf)3]/[RAFT] = 0.5, rMA = 3.08, rVAc = 0.17; [Sc(OTf)3]/[RAFT] = 1, rMA = 2.68, rVAc = 0.62). Carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry (DSC) analysis of preparative samples confirm the enhanced VAc incorporation with increased levels of Sc(OTf)3. Importantly the inclusion of Sc(OTf)3 does not deleteriously affect the thiocarbonylthio end-groups of the RAFT polymers, with high end-group fidelity being observed in all copolymerizations

    Low-dispersity polymers in ab initio emulsion polymerization : improved macroRAFT agent performance in heterogeneous media

    Get PDF
    We demonstrate that the in-built monomer-feeding mechanism in an emulsion polymerization can be used to dramatically increase control (providing low molar mass dispersity (Đ) ≤1.15) over polymerizations mediated by reversible addition–fragmentation chain transfer (RAFT) agents with relatively low transfer constants (Ctr). An amphiphilic RAFT agent [RSC(═S)Z], based on a hydrophilic methacrylic R-group [Ċ(CH3)2CO2-PEG] and a hydrophobic Z group with Ctr ≈ 2, was used to mediate the polymerization of a range of methacrylate monomers under both heterogeneous and homogeneous conditions. Consistent with the low Ctr, batch miniemulsion or solution polymerizations did not provide polymers with low Đ. The issue of a low Ctr is overcome in an emulsion polymerization when the [monomer]/[RAFT agent] ratio at the locus of polymerization is substantially lower than the overall ratio, due to the presence of a discrete monomer droplet phase. The proposed mechanism is supported by a theoretical model. As a demonstration of the increased level of control achievable, the system has been exploited to generate methacrylate multiblock copolymers

    The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by "switchable" N-pyridyl-functional dithiocarbamates

    Get PDF
    This is an accepted manuscript of an article published by Royal Society of Chemistry in the Polymer Chemistry on 24/08/2015, available online: https://doi.org/10.1039/C5PY01021G The accepted version of the publication may differ from the final published version.The ability of a RAFT agent to control the polymerization of a monomer is dictated by the structures of both the monomer and the RAFT agent. In this paper, the polymerization of N-vinylpyrrolidone was examined with a series of cyanomethyl N-aryl-N-pyridyldithiocarbamates [(4-R′Ph)N(py)C(S)SCH2CN] varying in the substituent (R′) at the 4-position on the phenyl ring. The polymerization of N-vinylpyrrolidone was best controlled when R′ was methoxy; one of the least active RAFT agents in the series. The preservation of RAFT agent functionality was demonstrated by chain extension experiments with further N-vinylpyrrolidone. Again best control again was found for the RAFT agent with R′ = MeOPh. The utility of this RAFT agent was also proved with the preparation of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone).The authors gratefully acknowledge the Australian Government for award of an Australian Postgraduate Award to S.J.S., the CSIRO Manufacturing Flagship and the School of Science and Technology at the University of New England for project funding.Published versio

    Ab initio RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity

    Get PDF
    We report on low molar mass cationic RAFT agents that provide predictable molar mass and low molar mass dispersities (Đm) in ab initio emulsion polymerization. Thus RAFT emulsion polymerization of styrene in the presence of the protonated RAFT agent, ((((cyanomethyl)thio)carbonothioyl)(methyl)amino)pyridin-1-ium toluenesulfonate (4), and the analogous methyl-quaternized RAFT agents, 4-((((cyanomethyl)thio)carbonothioyl)(methyl)amino)-1-methylpyridin-1-ium dodecyl sulfate (6), provide low dispersity polystyrene with Đm 1.2–1.4 for Mn ∼ 20 000. We postulate that the success of ab initio emulsion polymerization with 4 is due to the hydrophilicity of the pyridinium group, which is such that the water soluble RAFT agent partitions predominantly into the aqueous phase under the conditions of the experiment and that 4 provides little retardation. With 6, when the counterion is dodecyl sulfate, we can achieve “surfactant-free” RAFT emulsion polymerization to provide a low Đm polystyrene. However, the RAFT end-group is lost on isolation of the polymer. Preliminary results show that this class of RAFT agent is broadly applicable in ab initio emulsion polymerization of other more-activated monomers (e.g., butyl acrylate, butyl methacrylate). Furthermore, cyanomethyl(pyridin-4-yl)carbamodithioate (3, the RAFT agent in neutral form) provides molar mass control and Đm < 1.8 in ab initio emulsion polymerization of less activated monomers, specifically, the vinyl esters, vinyl acetate and vinyl benzoate.Published onlin

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field
    • …
    corecore