43 research outputs found

    The Definition of Pneumonia, the Assessment of Severity, and Clinical Standardization in the Pneumonia Etiology Research for Child Health Study

    Get PDF
    To develop a case definition for the Pneumonia Etiology Research for Child Health (PERCH) project, we sought a widely acceptable classification that was linked to existing pneumonia research and focused on very severe cases. We began with the World Health Organization’s classification of severe/very severe pneumonia and refined it through literature reviews and a 2-stage process of expert consultation. PERCH will study hospitalized children, aged 1–59 months, with pneumonia who present with cough or difficulty breathing and have either severe pneumonia (lower chest wall indrawing) or very severe pneumonia (central cyanosis, difficulty breastfeeding/drinking, vomiting everything, convulsions, lethargy, unconsciousness, or head nodding). It will exclude patients with recent hospitalization and children with wheeze whose indrawing resolves after bronchodilator therapy. The PERCH investigators agreed upon standard interpretations of the symptoms and signs. These will be maintained by a clinical standardization monitor who conducts repeated instruction at each site and by recurrent local training and testing

    Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci

    Get PDF
    Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3–31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939–1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development

    Sequelae due to bacterial meningitis among African children: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African children have some of the highest rates of bacterial meningitis in the world. Bacterial meningitis in Africa is associated with high case fatality and frequent neuropsychological sequelae. The objective of this study is to present a comprehensive review of data on bacterial meningitis sequelae in children from the African continent.</p> <p>Methods</p> <p>We conducted a systematic literature search to identify studies from Africa focusing on children aged between 1 month to 15 years with laboratory-confirmed bacterial meningitis. We extracted data on neuropsychological sequelae (hearing loss, vision loss, cognitive delay, speech/language disorder, behavioural problems, motor delay/impairment, and seizures) and mortality, by pathogen.</p> <p>Results</p> <p>A total of 37 articles were included in the final analysis representing 21 African countries and 6,029 children with confirmed meningitis. In these studies, nearly one fifth of bacterial meningitis survivors experienced in-hospital sequelae (median = 18%, interquartile range (IQR) = 13% to 27%). About a quarter of children surviving pneumococcal meningitis and <it>Haemophilus influenzae </it>type b (Hib) meningitis had neuropsychological sequelae by the time of hospital discharge, a risk higher than in meningococcal meningitis cases (median = 7%). The highest in-hospital case fatality ratios observed were for pneumococcal meningitis (median = 35%) and Hib meningitis (median = 25%) compared to meningococcal meningitis (median = 4%). The 10 post-discharge studies of children surviving bacterial meningitis were of varying quality. In these studies, 10% of children followed-up post discharge died (range = 0% to 18%) and a quarter of survivors had neuropsychological sequelae (range = 3% to 47%) during an average follow-up period of 3 to 60 months.</p> <p>Conclusion</p> <p>Bacterial meningitis in Africa is associated with high mortality and risk of neuropsychological sequelae. Pneumococcal and Hib meningitis kill approximately one third of affected children and cause clinically evident sequelae in a quarter of survivors prior to hospital discharge. The three leading causes of bacterial meningitis are vaccine preventable, and routine use of conjugate vaccines could provide substantial health and economic benefits through the prevention of childhood meningitis cases, deaths and disability.</p

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Geographic access to care is not a determinant of child mortality in a rural Kenyan setting with high health facility density

    Get PDF
    BACKGROUND: Policy-makers evaluating country progress towards the Millennium Development Goals also examine trends in health inequities. Distance to health facilities is a known determinant of health care utilization and may drive inequalities in health outcomes; we aimed to investigate its effects on childhood mortality. METHODS: The Epidemiological and Demographic Surveillance System in Kilifi District, Kenya, collects data on vital events and migrations in a population of 220,000 people. We used Geographic Information Systems to estimate pedestrian and vehicular travel times to hospitals and vaccine clinics and developed proportional-hazards models to evaluate the effects of travel time on mortality hazard in children less than 5 years of age, accounting for sex, ethnic group, maternal education, migrant status, rainfall and calendar time. RESULTS: In 2004-6, under-5 and under-1 mortality ratios were 65 and 46 per 1,000 live-births, respectively. Median pedestrian and vehicular travel times to hospital were 193 min (inter-quartile range: 125-267) and 49 min (32-72); analogous values for vaccine clinics were 47 (25-73) and 26 min (13-40). Infant and under-5 mortality varied two-fold across geographic locations, ranging from 34.5 to 61.9 per 1000 child-years and 8.8 to 18.1 per 1000, respectively. However, distance to health facilities was not associated with mortality. Hazard Ratios (HR) were 0.99 (95% CI 0.95-1.04) per hour and 1.01 (95% CI 0.95-1.08) per half-hour of pedestrian and vehicular travel to hospital, respectively, and 1.00 (95% CI 0.99-1.04) and 0.97 (95% CI 0.92-1.05) per quarter-hour of pedestrian and vehicular travel to vaccine clinics in children <5 years of age. CONCLUSIONS: Significant spatial variations in mortality were observed across the area, but were not correlated with distance to health facilities. We conclude that given the present density of health facilities in Kenya, geographic access to curative services does not influence population-level mortality

    Sensitivity of hospital-based surveillance for severe disease: a geographic information system analysis of access to care in Kilifi district, Kenya

    Get PDF
    OBJECTIVE: To explore the relationship between homestead distance to hospital and access to care and to estimate the sensitivity of hospital-based surveillance in Kilifi district, Kenya. METHODS: In 2002-2006, clinical information was obtained from all children admitted to Kilifi District Hospital and linked to demographic surveillance data. Travel times to the hospital were calculated using geographic information systems and regression models were constructed to examine the relationships between travel time, cause-specific hospitalization rates and probability of death in hospital. Access to care ratios relating hospitalization rates to community mortality rates were computed and used to estimate surveillance sensitivity. FINDINGS: The analysis included 7200 admissions (64 per 1000 child-years). Median pedestrian and vehicular travel times to hospital were 237 and 61 minutes, respectively. Hospitalization rates decreased by 21% per hour of travel by foot and 28% per half hour of travel by vehicle. Distance decay was steeper for meningitis than for pneumonia, for females than for males, and for areas where mothers had less education on average. Distance was positively associated with the probability of dying in hospital. Overall access to care ratios, which represent the probability that a child in need of hospitalization will have access to care at the hospital, were 51-58% for pneumonia and 66-70% for meningitis. CONCLUSION: In this setting, hospital utilization rates decreased and the severity of cases admitted to hospital increased as distance between homestead and hospital increased. Access to hospital care for children living in remote areas was low, particularly for those with less severe conditions. Distance decay was attenuated by increased levels of maternal education. Hospital-based surveillance underestimated pneumonia and meningitis incidence by more than 45% and 30%, respectively

    Sensitivity of hospital-based surveillance for severe disease: a geographic information system analysis of access to care in Kilifi district, Kenya

    No full text
    OBJECTIVE: To explore the relationship between homestead distance to hospital and access to care and to estimate the sensitivity of hospital-based surveillance in Kilifi district, Kenya. METHODS: In 2002-2006, clinical information was obtained from all children admitted to Kilifi District Hospital and linked to demographic surveillance data. Travel times to the hospital were calculated using geographic information systems and regression models were constructed to examine the relationships between travel time, cause-specific hospitalization rates and probability of death in hospital. Access to care ratios relating hospitalization rates to community mortality rates were computed and used to estimate surveillance sensitivity. FINDINGS: The analysis included 7200 admissions (64 per 1000 child-years). Median pedestrian and vehicular travel times to hospital were 237 and 61 minutes, respectively. Hospitalization rates decreased by 21% per hour of travel by foot and 28% per half hour of travel by vehicle. Distance decay was steeper for meningitis than for pneumonia, for females than for males, and for areas where mothers had less education on average. Distance was positively associated with the probability of dying in hospital. Overall access to care ratios, which represent the probability that a child in need of hospitalization will have access to care at the hospital, were 51-58% for pneumonia and 66-70% for meningitis. CONCLUSION: In this setting, hospital utilization rates decreased and the severity of cases admitted to hospital increased as distance between homestead and hospital increased. Access to hospital care for children living in remote areas was low, particularly for those with less severe conditions. Distance decay was attenuated by increased levels of maternal education. Hospital-based surveillance underestimated pneumonia and meningitis incidence by more than 45% and 30%, respectively

    Burden of pneumococcal disease in northern Togo before the introduction of pneumococcal conjugate vaccine

    No full text
    International audienceBackground: S. pneumoniae is a leading cause of meningitis morbidity and mortality in the African meningitis belt, but little is known of its contribution to the burden of pneumonia in the region. We aimed to estimate the incidence of pneumococcal disease in children and adults in northern Togo, before the introduction of pneumococcal conjugate vaccine (PCV). Methods and findings: From May 1st 2010 to April 30th 2013, we systematically enrolled all hospitalized patients meeting a case definition of suspected meningitis or clinical pneumonia, residing in Tone or Cinkasse districts, northern Togo and providing informed consent. We collected clinical data and tested biological specimens according to standardized procedures, including bacteriology and PCR testing of cerebro-spinal fluid for meningitis patients and blood cultures and whole blood lytA PCR for pneumonia patients. Chest X-rays (CXR) were interpreted using the WHO methodology. We included 404 patients with meningitis (104 \textless5 years of age) and 1550 with pneumonia (251 \textless5 years) over the study period. Of these, 78 (19%) had pneumococcal meningitis (13 \textless5 years), 574 (37%) had radiologically-confirmed pneumonia (83 \textless5 years) and 73 (5%) had culture-confirmed pneumococcal pneumonia (2 \textless5 years). PCV13 serotypes caused 79% (54/68) of laboratory-confirmed pneumococcal meningitis and 83% (29/35) of culture-confirmed pneumococcal pneumonia. Serotype 1 predominated in meningitis (n = 33) but not in pneumonia patients (n = 1). The incidence of pneumococcal disease was 7.5 per 100,000 among children \textless5 years of age and 14.8 in persons 5 years of age and above in the study area. When considering CXR-confirmed and blood PCR-positive pneumonia cases as likely pneumococcal, incidence estimates increased to 43.7 and 66.0 per 100,000 in each of these age groups, respectively. Incidence was at least 3-fold higher when we restricted the analysis to the urban area immediately around the study hospitals. Conclusions: Our findings highlight the important role of S. pneumoniae as a meningitis and pneumoniacausing pathogen in the African meningitis belt. Pneumococcal disease incidence in our population was substantially lower than expected from global models; we hypothesize that poor access to hospital care led us to substantially underestimate the burden of disease. Surveillance is ongoing and will enable an evaluation of PCV impact, providing novel, high quality data from the region
    corecore