17 research outputs found
Bacillus phytases: Current status and future prospects
Phytases catalyze the hydrolysis of phytic acid in a stepwise manner to lower inositol phosphates, myo-inositol (having important role in metabolism and signal transduction pathways), and inorganic phosphate. These enzymes have been widely used in animal feed in order to improve phosphorus nutrition and to decrease pollution in animal waste. Compared to previously described phytases, the phytase (PhyL) from Bacillus licheniformis ATCC 14580 has attractive biochemical properties which can increase the profitability of several biotechnological procedures (animal nutrition, human health…etc). Due to its amino acid sequence with critical substitutions, the PhyL could be a model to enhance other phytases features, in terms of thermal stability and high activity. Otherwise, an engineered PhyL, with low pH optimum, will represent a challenge within the class of β- propeller phytases
Microbial reduction of cholesterol to coprostanol: An old concept and new insights
The gut microbiota plays a key role in cholesterol metabolism, mainly through the reduction of cholesterol to coprostanol. The latter sterol exhibits distinct physicochemical properties linked to its limited absorption in the gut. Few bacteria were reported to reduce cholesterol into coprostanol. Three microbial pathways of coprostanol production were described based on the analysis of reaction intermediates. However, these metabolic pathways and their associated genes remain poorly studied. In this review, we shed light on the microbial metabolic pathways related to coprostanol synthesis. Moreover, we highlight current strategies and future directions to better characterize these microbial enzymes and pathways
Design of clinical trials evaluating cathepsin C inhibition in inflammatory bowel diseases
International audienc
Serine protease inhibitors and human wellbeing interplay: new insights for old friends
Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes and their dysfunction is associated to various diseases. Thus, increasing interest is given to these proteins as new therapeutic targets. Several studies provided functional and structural data about human serpins. By comparison, only little knowledge regarding bacterial serpins exists. Through the emergence of metagenomic studies, many bacterial serpins were identified from numerous ecological niches including the human gut microbiota. The origin, distribution and function of these proteins remain to be established. In this report, we shed light on the key role of human and bacterial serpins in health and disease. Moreover, we analyze their function, phylogeny and ecological distribution. This review highlights the potential use of bacterial serpins to set out new therapeutic approaches
Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to Gram positive and Gram negative bacteria
International audienceSilver nanoparticles capped with nine different sulphonated calix[n] arenes were tested for their anti-bacterial effects against B. subtilis and E. coli at an apparent concentration of 100 nM in calix[n] arene. The results show the para-sulphonato-calix[n] arenes are active against Gram positive bacteria and the derivatives having sulphonate groups at both para and alkyl terminal positions are active against Gram negative bacteria. The calix[6] arene derivative with only O-alkyl sulphonate groups shows bactericidal activity
Bile Acids: Key Players in Inflammatory Bowel Diseases?
Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide with a limited number of efficient therapeutic options despite advances in medical therapy. Although changes in the gut microbiota composition are recognized as key drivers of dysregulated intestinal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and contribute to the pathogenesis of the disease. In this review, we explore the interactions involving BAs and gut microbiota in IBDs, and discuss how the gut microbiota–BA–host axis may influence digestive inflammation
Alpha-mannosidosis in Tunisian consanguineous families: Potential involvement of variants in GHR and SLC19A3 genes in the variable expressivity of cognitive impairment
International audienceAlpha-Mannosidosis (AM) is an ultra-rare storage disorder caused by a deficiency of lysosomal alpha-mannosidase encoded by the MAN2B1 gene. Clinical presentation of AM includes mental retardation, recurrent infections, hearing loss, dysmorphic features, and motor dysfunctions. AM has never been reported in Tunisia. We report here the clinical and genetic study of six patients from two Tunisian families with AM. The AM diagnosis was confirmed by an enzymatic activity assay. Genetic investigation was conducted by Sanger sequencing of the mutational hotspots for the first family and by ES analysis for the second one. In the first family, a frameshift duplication p.(Ser802GlnfsTer129) was identified in the MAN2B1 gene. For the second family, ES analysis led to the identification of a missense mutation p.(Arg229Trp) in the MAN2B1 gene in four affected family members. The p.(Ser802GlnfsTer129) mutation induces a premature termination codon which may trigger RNA degradation by the NMD system. The decrease in the levels of MAN2B1 synthesis could explain the severe phenotype observed in the index case. According to the literature, the p.(Arg229Trp) missense variant does not have an impact on MAN2B1 maturation and transportation, which correlates with a moderate clinical sub-type. To explain the intra-familial variability of cognitive impairment, exome analysis allowed the identification of two likely pathogenic variants in GHR and SLC19A3 genes potentially associated to cognitive decline. The present study raises awareness about underdiagnosis of AM in the region that deprives patients from accessing adequate care. Indeed, early diagnosis is critical in order to prevent disease progression and to propose enzyme replacement therapy
Corrigendum: Current phenotypic and genetic spectrum of syndromic deafness in Tunisia: paving the way for precision auditory health
International audience[This corrects the article DOI: 10.3389/fgene.2024.1384094.]