11,830 research outputs found

    Mode-Coupling Theory as a Mean-Field Description of the Glass Transition

    Get PDF
    Mode-coupling theory (MCT) is conjectured to be a mean-field description of dynamics of the structural glass transition and the replica theory to be its thermodynamic counterpart. However, the relationship between the two theories remains controversial and quantitative comparison is lacking. In this Letter, we investigate MCT for monatomic hard sphere fluids at arbitrary dimensions above three and compare the results with replica theory. We find grave discrepancies between the predictions of two theories. While MCT describes the nonergodic parameter quantitatively better than the replica theory in three dimension, it predicts a completely different dimension dependence of the dynamical transition point. We find it to be due to the pathological behavior of the nonergodic parameters derived from MCT, which exhibit negative tails in real space at high dimensions.Comment: 5 pages, to appear in Phys. Rev. Lett.: Typos have been correcte

    Thermodynamics and Structural Properties of the High Density Gaussian Core Model

    Get PDF
    We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, logTf\log T_f, logTmρ2/3\log T_m \propto -\rho^{2/3}, where ρ\rho is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.Comment: 10 pages, 10 figure

    Slow Dynamics of the High Density Gaussian Core Model

    Get PDF
    We numerically study crystal nucleation and glassy slow dynamics of the one-component Gaussian core model (GCM) at high densities. The nucleation rate at a fixed supersaturation is found to decrease as the density increases. At very high densities, the nucleation is not observed at all in the time window accessed by long molecular dynamics (MD) simulation. Concomitantly, the system exhibits typical slow dynamics of the supercooled fluids near the glass transition point. We compare the simulation results of the supercooled GCM with the predictions of mode-coupling theory (MCT) and find that the agreement between them is better than any other model glassformers studied numerically in the past. Furthermore, we find that a violation of the Stokes-Einstein relation is weaker and the non-Gaussian parameter is smaller than canonical glassformers. Analysis of the probability distribution of the particle displacement clearly reveals that the hopping effect is strongly suppressed in the high density GCM. We conclude from these observations that the GCM is more amenable to the mean-field picture of the glass transition than other models. This is attributed to the long-ranged nature of the interaction potential of the GCM in the high density regime. Finally, the intermediate scattering function at small wavevectors is found to decay much faster than its self part, indicating that dynamics of the large-scale density fluctuations decouples with the shorter-ranged caging motion.Comment: 15 pages, 13 figure

    A new effective Lagrangian for nuclear matter

    Full text link
    The relativistic mean field model, the Zim\'anyi - Moszkowski (ZM) Lagrangian describes nuclear matter and stable finite nuclei even in the non-relativistic limit. It fails, however, to predict the correct non-relativistic spin-orbit (SO) coupling. In this paper we improve on this matter by an additional tensor coupling analogous to the anomalous gyromagnetic ratio. It can be adjusted to describe the SO-term without changing the mean field solution of the ZM-Lagrangian for nuclear matter.Comment: 8 pages LaTe

    Halo-Galaxy Lensing: A Full Sky Approach

    Get PDF
    The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counter-intuitively, errors in the conventionally used flat-sky approximation remain at a % level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few % level at the baryonic acoustic oscillation scales for lensing halos of z0.2z\sim 0.2, and comparable with the effect of primordial non-Gaussianity with fNL10f_{\rm NL}\sim 10 at large separations. Our results allow to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys.Comment: 12 pages, 4 figure
    corecore