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We numerically study crystal nucleation and glassy slow dynamics of the one-component Gaussian
core model (GCM) at high densities. The nucleation rate at a fixed supercooling is found to decrease
as the density increases. At very high densities, the nucleation is not observed at all in the time
window accessed by long molecular dynamics (MD) simulation. Concomitantly, the system exhibits
typical slow dynamics of the supercooled fluids near the glass transition point. We compare the simu-
lation results of the supercooled GCM with the predictions of mode-coupling theory (MCT) and find
that the agreement between them is better than any other model glassformers studied numerically in
the past. Furthermore, we find that a violation of the Stokes-Einstein relation is weaker and the non-
Gaussian parameter is smaller than canonical glassformers. Analysis of the probability distribution
of the particle displacement clearly reveals that the hopping effect is strongly suppressed in the high
density GCM. We conclude from these observations that the GCM is more amenable to the mean-
field picture of the glass transition than other models. This is attributed to the long-ranged nature
of the interaction potential of the GCM in the high density regime. Finally, the intermediate scat-
tering function at small wavevectors is found to decay much faster than its self part, indicating that
dynamics of the large-scale density fluctuations decouples with the shorter-ranged caging motion.
© 2011 American Institute of Physics. [doi:10.1063/1.3615949]

. INTRODUCTION enough. Even the simplest class of model glassformers (with
a few exceptions” !°) is inevitably bidisperse or polydisperse
in order to avert the nucleation to the crystalline phase.” This
complicates quantitative assessment of the simulation results.
Finally, we still lack a realistic model glassformer which con-
forms to the mean-field picture in finite dimensions. Concept
of the mean-field scenario of the structural glass transition is
basically borrowed from the mean-field theory developed in
the spin glass communities.>!! The replica theory'> ! and
the mode-coupling theory (MCT) (Ref. 14) are believed to be
the static and dynamic versions of the mean-field theory of the
glass transition, simply because of their apparent resemblance
to the spin-glass counterparts. The mosaic pictures of the
random first order transition theory have been developed as
the finite dimension version of this mean field pictures.®!! 13
Accumulated simulation data are not inconsistent qualita-
tively from the prediction of the mean field theories, but
the quantitative agreement between simulation results and
theoretical predictions are far from compelling. The best way
to verify the mean-field scenario would be to take the mean-
field limit by either going to higher dimensions or making the
system’s interactions longer-ranged. Recently, simulations for
four-dimensional systems have been performed.'*-'¢ Results
therein hint that the dynamic heterogeneities are suppressed
compared with three-dimensional systems and agreement
with MCT moderately improves.'” However, considering the
current computational abilities, it would be hard to simulate
the system beyond four dimension, whereas the upper critical
dimension of the glass transition is argued to be eight.'”!8
On the other hand, few studies have been done for realistic
liquids with long-ranged particle interactions.'*-?!
) Author to whom correspondence should be addressed. Electronic mail: The Gaussian core model (GCM) is a candidate to dispel
kunimasa @sakura.cc.tsukuba.ac.jp. all of the above-mentioned concerns and could be an ideal

Essential aspects of the glass transition of the super-
cooled liquids remain still elusive despite of decades of
study. Many theories and scenarios have been proposed
to explain the dramatic slow down of the systems and
the associated growing cooperative length scales near the
glass transition point.'"™ They can explain the experimental
results equally well or equally poorly, but none of them have
been proved to be decisively better than the other. Even a
satisfactory mean-field picture of the glass transition has not
been established.>® Numerical simulation of simple model
fluids is an ideal route to examine the competing theories.
Considerable efforts have been put forward to gain insight
from the dynamical behaviors of simple model glassformers
in silico, but compelling answers are still lacking. There are
several reasons why the simulation studies are not successful
in sorting out numerous scenarios and theories. First, the
model systems are more or less similar; the pair potentials
of canonical glassformers studied in the past are exclusively
characterized by short-ranged strong repulsions. Examples
are Lennard-Jones, its Weeks-Chandler-Andersen (WCA)
counterpart, soft-core, and the hard sphere potentials. Since
the strong repulsion dominates thermodynamic and dynamic
properties of dense fluids, it is hardly surprising that the
results for these models are qualitatively similar.”-3 Studies
of a completely different class of potential systems may
potentially diversify our views and perspectives on the glass
transition within the limited accessible time windows of
the simulations. Second, the model systems are not clean
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and clean bench to compare with various glass theories.
The GCM consists of the point particles interacting with a
Gaussian shaped repulsive potential,?>~°

v(r) = g exp[—(r/o)?], (1

where r is the interparticle separation, €y and o are the
parameters which characterize the energy and length scales,
respectively. The GCM is one of the simplest models of the
so-called ultrasoft potential systems which are character-
ized by the bounded and long-tailed repulsive potential.’!
Recently, we have reported that the one-component GCM
vitrifies at very high densities.’> The GCM or the ultrasoft
particles, in general, have very distinct and exotic properties
both thermodynamically and dynamically,”>* such as
the re-entrant melting at high densities, negative thermal
expansion coefficient, and anomalous density dependence
of the diffusion coefficient. There are several studies on the
glass transition of the ultrasoft particles’*7 and it was found
that they exhibit rich dynamical behaviors different from
conventional model glassformers.**33 One of the advantages
to study the glass transition of the ultrasoft particles is that,
due to the mild repulsion tail of the potential, the density as
well as the temperature can be used as a parameter to control
the system. Exploring the wide range of density—temperature
parameter space makes it easier to establish various scaling
laws, to bridge the gaps between temperature-driven ordinary
glasses and density-driven colloidal glasses, and to help uni-
fying the concepts of the finite-temperature glass transition
and the zero-temperature jamming transition.’®3’ However,
most studies in the past focused on the relatively low density
regime, where the generic nature of the glass transition is
not extremely different from that of the conventional model
glassformers. The systems at low densities, including the
GCM, also had to be either polydisperse or bidisperse in
order to avoid crystallization.

The GCM at very high densities is very different.*? First
of all, the system vitrifies without poly(bi)dispersity. The nu-
cleation rate systematically decreases as the density increases
and the system starts exhibiting typical slow dynamics
observed in supercooled fluids near the glass transition point.
Furthermore, the dynamics is quantitatively well-described
by MCT. Especially, the MCT nonergodic transition point
extracted from the simulation unprecedentedly matches
with the theoretical prediction. Besides, the violation of the
Stokes-Einstein (SE) relation and the amplitude of the non-
Gaussian parameter, both of which are the manifestations of
the heterogeneous fluctuations of dynamics, are suppressed.
We conjecture that these facts can be attributed to the long-
ranged nature of the interaction potential at the high densities
where particles are overlapped. These results suggest that the
high density GCM is not only one of the cleanest model glass-
formers in silico, but also the closest to the mean-field model.

In this paper, we present thorough and complete numer-
ical analysis of the nucleation and glassy dynamics of the
high-density and one-component GCM. We not only present
the exhaustive set of the numerical results but also provide
with the new evidence which bolsters the validity of MCT.
Detailed analysis of thermodynamic and structural properties
of the high density GCM, such as the phase diagram and the
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static structure factors are discussed in Ref. 33. In the previous
study,?”> we have attributed the weak violation of the SE rela-
tion and smaller non-Gaussian parameter to the suppression
of the dynamic heterogeneities. We provide stronger and more
direct evidence that intermittent heterogeneous motion is sup-
pressed by monitoring the distribution of the particle displace-
ment as a function of time. We also evaluate the correlation
functions of single and collective density fluctuations. Sur-
prisingly, we find that dynamics of the collective density de-
couple from the single particle density at large length scales,
where the former relaxes much faster than the latter. This is in
stark contrast with the ordinary model glassformers for which
the slow glassy dynamics set in over the whole length scales
for both collective and single particle densities alike. We com-
pare these simulation results with MCT predictions and find
that MCT beautifully captures the decoupling of dynamics at
the large length scales. However, we also find a subtle but
noticeable disagreement of MCT from the simulation results
at intermediate length scales, where the nonergodic parame-
ter (the plateau height of the two step relaxation in the den-
sity correlators) predicted by MCT shows a weak shoulder
which tends to grow as the density increases. This shoulder is
reminiscent of those found for the d-dimensional hard sphere
glasses at large d evaluated from MCT (Refs. 5, 6) and may
be a signal of breakdown of MCT at the mean field limit.

This paper is organized as follows. In Sec. II, we sum-
marize the simulation method, theoretical background, and
the setting of the system. The nucleation dynamics from fluid
to crystalline phase is discussed in Sec. III. In Sec. IV, we
present all simulation results on various static and dynami-
cal observables. Detailed analysis and careful comparison of
the simulation results with the MCT predictions are made.
Suppression of the dynamic heterogeneities is also discussed.
Finally, Sec. V concludes the paper with a summary.

Il. PRELIMINARIES
A. Simulation methods

We investigate the dynamics of the one-component GCM
using a molecular dynamics (MD) simulation in the NV T en-
semble with a Nosé thermostat. The system is a cubic cell and
a periodic boundary condition is imposed. A time-reversible
integrator, similar to the velocity-Verlet method, is used with
a potential cut-off at r = 503 Hereafter, o, € / ks, and
o(m /eo)l/ 2 are taken as the units of the length, temperature,
and time, respectively. The time step is fixed at 0.2, which
is sufficiently small to conserve the Nosé Hamiltonian
during the long simulation runs. The reason to use the NVT
ensemble is to monitor the nucleation of the system at a fixed
temperature while equilibrating the system. In order to check
that the dynamic properties of the supercooled GCM are not
affected by the choice of ensemble, we have performed the
NVE ensemble simulation for several state points at which the
system did not nucleate and confirmed that slow dynamics
were not influenced by the ensemble. We focus on the four
densities, p = 0.5, 1.0, 1.5, and 2.0, for which the melting
temperatures are T, = 4.4 x 1073, 5.0 x 1074, 5.9 x 1073,
and 8.2 x 107%, respectively.’®> We perform the MD
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FIG. 1. State points at which MD simulations were performed (crosses).
Squares with solid line and filled circles with dotted line are the solid-fluid
phase boundary obtained numerically by us (see Refs. 32,33) and Prestipino
et al. (see Ref. 26) respectively. The melting and freezing lines are indistin-
guishable at this scale.

simulations for various temperatures in the vicinity of 7, for
each density. The state points at which we performed sim-
ulation are shown in Fig. 1 along with the solid-fluid phase
boundary line.?®3%3% As discussed in detail in the previous
study, 3* the melting temperature, T},, at the high density
regime p > 1 obeys an asymptotic scaling log 7, oc —p?/3
which was originally conjectured by Stillinger.>? For all den-
sities which we study, thermodynamically stable crystalline
structure is bee.*>33 We run the simulations for the total run
time always 50 times longer than the structural relaxation
time. For example, the simulation time was fy;,, = 107 for
the lowest temperature at p = 2.0. This was confirmed to
be sufficiently long to neglect the aging effect. The first
half of the simulation run was used for the equilibration
and we used the trajectories of the second half for the
analysis of the stationary dynamics. For each state point, five
independent runs are performed and the results are obtained
by averaging over those trajectories in order to improve the
statistics. Configurations obtained from the high temperature
simulation were used as the initial configurations. The system
size is fixed at N = 3456. The simulations for N = 2000
and 9826 confirmed that the finite-size effect is negligible.
These numbers of particles are twice the cube of integers, a
natural choice for the bcc crystal in a cubic simulation box.

B. Mode coupling theory

In this work, we compare our simulation results for
dynamics of the high density GCM in the supercooled
state with the prediction of MCT. In the context of the
glass transition, MCT is commonly expressed as a set
of the self-consistent nonlinear equations for correlation
functions. These correlation functions are the intermediate
scattering function (the correlation of the collective density),
F(k,t)= (8,o(k 0)dp(— k t))/N, where 8,0(k t) is the k-
dependent density fluctuation, and the self intermediate scat-
tering function or the correlation of the single particle density,
Fsk,t) = (ps(k 0)ps(— k t)), where pg(k,t) is the density
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of a single particle. The time evolution of F(k, t) is given by
the generalized Langevin equation

Q2 EFk, 1)+ F(k, 1) + /ds Mk, t —s)F(k,s) =0
0

2
where Q(k) = /kgTk*/mS(k) is the frequency term.
S(k) = F(k,t = 0) is the static structure factor. M(k,t)

is the memory kernel which, according to MCT, is approxi-
mated as

S(k
Mk, 1) = p2k(2)/

VG, k — §)F(q, DF(k — g, 1).

3)

Here, Vi(q,p) = {k-Gelq)+k - pe(p)}/k is the vertex,
where c(k) = {1 — 1/S5(k)}/p is the direct correlation func-
tion. In Eq. (3), we neglect the short time contribution
for the memory kernel, which does not affect the slow
dynamics. MCT predicts that F'(k, t) undergoes the ergodic-
nonergodic transition at a finite temperature, 7., below which
lim,_, o F(k,t) = Fy(k) remains finite. F(k) is referred to
as the nonergodic parameter. The nonergodic parameter and
T, can be evaluated by taking + — oo of Egs. (2)and (3),
which is expressed as

Foo(k)/S(k)
1 = Foo(k)/S(k)

where My (k) is the long time limit of the memory kernel.
As the temperature approaches to 7, from above, MCT
first predicts that F(k,t) exhibits the two-step relaxation
behavior characterized by a finite plateau and the slow
structural relaxation. The height of the plateau is identical
to Foo(k) at T = T,. The structural relaxation or the alpha
relaxation time, t,, increases and eventually diverges at T..
MCT predicts that the increase of 7, is given by a power law
t, ~ |T — T,|77, where y is a system-dependent parameter
which can be evaluated from the MCT equation.

Likewise, the MCT equation for the self intermediate
scattering function, Fy(k,t), is written in the same form as
Eq. (2), but with the frequency term Q (k) = /kgTk%/m
instead of (k) and the self memory kernel

(2 )3k

= Moo (k), “

M(k,t)=

{—C(q)} Fi(q.DF(k —Gl. 1)

&)

instead of M(k, t) in Eq. (3). The MCT equation for F(k, t)
undergoes the nonergodic transition exactly at the same tem-
perature, T, as for F(k,t), at least for most model systems
studied in the past (see Ref. 39 for exceptions). By taking
the small k-limit of the MCT equation for Fi(k,t), we can
also construct the self-consistent equation for the mean square
displacement (R?(¢)). MCT predicts that the self-diffusion
coefficient D = lim,_,,(R%(t))/6t follows the power law
~ |T — T,|¥ and vanishes at T,. Note that the power law
exponent y is identical with that for 7,. In addition to the
MCT nonergodic transition and power law of the transport
coefficients, MCT predicts many important dynamical prop-
erties, such as the dynamic scaling known as von Schweidler’s

2k2 (27r)3
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law at the plateau regime (the beta regime) and the time-
temperature superposition at the alpha relaxation regime.*’

In order to solve the MCT equations, the static structure
factor, S(k), is required as an input. We used S(k) obtained
directly from simulations. For the numerical integration of
Egs. (3) and (5), we employed equally spaced 400 grid points
with the grid spacing Ak = 0.16.

lll. CRYSTALLIZATION

Ordinary simple atomic fluids nucleate to form crystals
quickly as the temperature is lowered below the melting point.
In this section, we analyze the crystal nucleation dynamics
of the high density GCM and show that the nucleation rate
systematically decreases as the density increases. In order to
monitor the crystallization from the homogeneous fluid phase,
we use the potential energy U and the bond order parameter
g6.*' The bond order parameter is defined by

1 N
96 = 5 ;jqﬁ(i), (©6)

where ¢;(7) is the Ith bond order parameter of the ith particle
defined by

4 I
T 2 lam P, ™

m=—I

q(i) =

Here, g;,,(7) is the complex bond parameter of the ith particle
given by

1 Ny (i) . R
m [) = —— Ym Ri —R; s 8
am(i) = 5 ; im( i) (8)

where R; is the position of the ith particle, N,(7) is the num-
ber of nearest neighbor particles around the ith particle, and
Y;,,(7) is the spherical harmonic function of the degree / and
the order m. In our calculation, we defined that the two parti-
cles are the nearest neighbor if their distance is smaller than
the first minimum position of the radial distribution function.

ge 1s zero in the fluid phase and g¢ =~ 0.5 for a perfect
bee crystal.*! In Fig. 2, we show g and the potential per
particle u of the five representative trajectories as a function
of the lapse of time measured from the moment when the
system is prepared. At a relatively low density p = 0.5 and
temperature just below the melting point 7 = 2.5 x 1073
(Fig. 2(a)), one observes that gg’s of all five trajectories
abruptly increase from zero to a finite value and concomi-
tantly u’s decrease. These behaviors are the hallmark of
the crystal nucleation. This figure shows that the nucleation
initiates only after the lapse of time several times longer
than the structural relaxation time 7, which is indicated by
the short bold lines in the figures (the precise definition and
compiled data set of t, are given in Sec. IV). The degree of
supercooling defined by A =1—T/T,, at this state point
is 0.43. Next, we look at the higher density p = 1.5. Five
runs of gg and u at T = 2.6 x 1073 are shown in Fig. 2(b).
Despite of the deeper supercooling (A = 0.55) and much
longer simulation runs (over 40 7,,) than Fig. 2(a), g¢ and u do
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FIG. 2. The time dependence of the bond order parameter gs and the
potential energy per particle u of the representative trajectories measured
from the time when the system is prepared. (a) p = 0.5, T = 2.5 x 1073,
b)yp =15T =26x107,0)p = 15T = 23x 1073, and (d) p
=20, T = 2.93 x 107°. The short bold line in each figure indicates the
time scale of 7.

not show any sign of nucleation. Decreasing the temperature
further to 7 = 2.3 x 107 where A = 0.6 (Fig. 2(c)), one
eventually observes the crystallization for the two out of
five trajectories. Note that it takes decades of the structural
relaxation time (which itself also increases with the degree of
supercooling) before the precipitous nucleation takes place.
At even higher density p = 2.0, all five trajectories fail to
nucleate even at a very low temperature 7 = 2.93 x 107°
with the similar degree of the supercooling, A = 0.6, for the
whole simulation runs.

In order to ensure that the nucleated samples are unam-
biguously the bee crystal and that samples which failed to
nucleate remain in the homogeneous fluid phase, we evalu-
ate new parameters which were recently introduced by Lech-
ner et al.*? They have used the two averaged bond order pa-
rameters g4(i) and ge(i) and demonstrated that the correlation
map of them improves the ability to determine the crystalline
structures.*>* The averaged bond order parameter is defined
by replacing ¢;,,(i) in Eq. (7) with the averaged value gy, (i)
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FIG. 3. The g4-Ge correlation map for the configurations obtained at the end of all the five simulation runs at (p, T) = (1.5,2.3 x 1075) (left panel) and
(p, T) = (2.0,2.93 x 107%) (right panel). Four circles are the characteristic distribution for the bce, hep, fec crystal, and fluid phase.

defined by
Ny (i)

q m l = = m k 5 9

Gin (i) Nh(l.)ngm ©)
where ¢, (k) is given by Eq. (8) and the sum runs from k
over all N,(i) neighbors of the ith particles, including the
ith particle itself (k = O in the sum). In Fig. 3, we placed
all gs4(i) and ge¢(i) @ = 1,2,..., N) in the correlation map
for the configurations obtained at the end of simulation runs
of the two state points (p, T) = (1.5,2.3 x 10~%) and (p, T)
= (2.0,2.93 x 107%). The four circles represent the charac-
teristic areas for the bce, hep, fec crystals, and fluid phase.42
The results for (p, T) = (1.5, 2.3 x 1073) show that the two
trajectories remain in the fluid phase whereas the rest formed
the bece crystal. It is clear that no other structures are formed
in the course of the simulations. Note that the results for the
three trajectories which nucleated slightly deviate from the
bce region, which we presume is due to defects or imperfect-
ness of the obtained crystalline structures. On the other hand,
all the five trajectories for (o, T) = (2.0, 2.93 x 107%) do not
show any hint of crystal nucleation and the configurations re-
main completely disordered. Hereafter, we focus on the den-
sities p = 1.5 and 2.0 because the crystal nucleation is suffi-
ciently slow that canonical glassy dynamics are observed.

IV. GLASSY DYNAMICS
A. Structural functions

Before discussing the slow dynamics in the supercooled
state, we summarize the fluid structures of the high density
GCM to demonstrate the difference from those of con-
ventional model glassformers. In Fig. 4, we plot the radial
distribution functions g(r) and static structure factors S(k) of
the GCM for p = 1.5 and 2.0 near and below the melting
temperatures. Both g(r) and S(k) show typical behaviors of
dense fluids characterized by the prominent peaks near the
position and the wavevector corresponding to the first coor-
dination shell. Their peak heights increase as the temperature
decreases. As density increases from p = 1.5 to 2.0, the

peak position of g(r) shifts from r = 0.94 to 0.85 and for
S(k) from k = 7.8 to 8.4. The noticeable feature of the high
density GCM is that the tail of the potential v(r) stretches be-
yond the first coordination shell, as demonstrated in Figs. 4(a)
and 4(c). This considerable overlap of particles imparts the
character of the long-ranged interaction systems to the high
density GCM. The long-ranged nature also appears as the
anomalously small S(k) at small wavevectors. The insets of
Figs. 4(b) and 4(d) show that S(k =~ 0), or the compressibility,
is far smaller than the other model fluids at compatible super-
coolings, implying that the density fluctuations at large length
scales are strongly suppressed. This is the common feature of
the long-range interacting systems. A well-known example is
the one component classical plasma,** where S(k) vanishes
at k — 0. More detailed analysis of the simulation results for
the structural functions and comparisons with the predictions
of the liquid state theory have been reported in Ref. 33. S(k)’s
obtained here are used in the MCT analysis discussed below.

B. Mean square displacement and self intermediate
scattering function

In this subsection, we evaluate various dynamic quan-
tities and observe their slow dynamics, focusing on
the trajectories which did not crystallize even when
deeply supercooled. The mean square displacement (R>(t))
=N"! vazl (|13,-(t) — ﬁi(0)|2), the self intermediate correla-
tion function Fy(k, t), and the intermediate correlation func-
tion F'(k, t) are evaluated for the densities p = 1.5 and 2.0.
Figure 5 shows (R%(t)) and F,(k, t) at several temperatures
well below the melting temperature. These figures clearly dis-
play the canonical behaviors of the supercooled liquids near
the glass transition point. For p = 1.5, we could not ob-
serve the glassy dynamics below 7 = 2.4 x 107> because
the crystallization intervened. At p = 2.0, all trajectories
did not crystallize down to the lowest temperature which we
accessed. In Figs. 5(a) and 5(c), one observes that, as the
temperature is lowered, (R?(t)) develops the long plateau
regimes followed by the usual diffusive behaviors (R?(t)) o ¢
at longer times. The appearance of the plateau signals the
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FIG. 4. The radial distribution function g(r) (left panels) and the static structure factors S(k) (right panels). (a) and (b) are for p = 1.5 at T = 7.0 x 107>
(dashed line) and T = 2.4 x 107 (solid line). (c) and (d) are for p = 2.0 at T = 7.0 x 107 (dashed line) and T = 2.93 x 107 (solid line). The insets of (b)

and (d) are the closeup of S(k) at small k’s in the semilog plot. Dotted lines in (a) and (c) are the bare potential v(r).
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FIG. 5. (R%(1)) ((a) and (c)) and Fj(kmax, 1) ((b) and (d)). The filled circles are simulation results for p = 1.5 and from left to right, T X 10° = 7,4,3,2.6,

and 2.4 (upper panel), and for p = 2.0 and from left to right, T x 10° = 10,7, 5, 4, 3.4, 3.2, 3, and 2.93 (lower panel). The dashed line in (c) is the mean
square displacement of the KA model at 7 = 0.475 (see Ref. 45) shifted to fit with the GCM’s result at the lowest temperature at long times (see text). The

dashed lines in (b) and (d) are the MCT solutions obtained using the same reduced temperatures, &, as those for the simulation data.
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054901-7 Slow dynamics of the high density Gaussian core model

formation of a cage of a particle surrounded by its neigh-
bors and is the hallmark of the supercooled fluid near the
glass transition point. The value of \/(R2(¢)) at the plateau
region is a measure of the sizes of the cages. They are about
(R%(t)) ~0.17 for p = 1.5 and 0.14 for p = 2.0. These
values are slightly smaller than the values for conventional
model glassformers. For example, /(R%(r)) ~ 0.2 for the
Kob-Anderson Lennard-Jones mixture (KA model). ¥

In Figs. 5(c) and 5(d), we plot Fy(k = kmax, t) for sev-
eral temperatures, where kp,x is the wavevector where S(k)
shows the maximum peak. Fy(kmax, t) relaxes exponentially
at high temperatures. As the temperature decreases, a plateau
with a finite height appears and it stretches over longer times
as the temperature decreases further, while the plateau height
remains almost constant. This two-step relaxation behavior is
another hallmark of the slow dynamic near the glass transition
point. The terminal relaxation following the plateau is called
the structural or alpha relaxation. We define the structural re-
laxation time t, by Fy(kmax, t = Tq) = e !l.In Fig. 6, we plot
Fy(kmax, t) against the time scaled by 7. The result shows that
relaxation curves are collapsed at the alpha relaxation regime.
This is the universal property of the glassy systems known
as the time-temperature superposition (TTS).*’ Furthermore,
all curves where TTS holds are fitted by a stretched exponen-
tial function e~@/=" with the exponent 8 ~ 0.8. This value
is comparable with that for the KA model* and for the hard
sphere mixture.*

In Fig. 7, the structural relaxation time 7, and the self dif-
fusion constant defined by D = lim;_, (R%(1)) /6t are plotted
against the inverse temperature. We plotted D~! and adjusted
its ordinate so that the data collapses with t, at high tem-
peratures. For both densities, p = 1.5 and 2.0, 7, and D!
drastically increase as the temperature is lowered. Both data
almost collapse to each other for the whole temperatures ex-
cept for the slight deviation at the lowest temperature. As we
shall discuss later, this is the direct reflection of a weak viola-
tion of the Stokes-Einstein relation.

F(k,t)

0.0

0.01 0.1 1 10
t/«
a

FIG. 6. Same as Fig. 5(d) but plotted against ¢ scaled by t,. Filled circles
are the simulation results for p = 2.0 and T x 106 =5,4,3.4,3.2,3,2.93
from right to left. The solid line is a fit by a stretched exponential function.

J. Chem. Phys. 135, 054901 (2011)

0.2 14 .
105 _"\_I\ '-..'.. - 10
& -.‘..
5" . ®
104 { . w [ 10°
s EL'E"E“‘BE@ %, Ay
[ 0.0 - ] Q
2x10%  4x10* . 5
3 | ] - 10
10
.
L] | 4
102 | . @ [ 10
0 104 2x10% 3x10% 4x10% 5x104
1/T
6 . 1 8
10° 7 0
= ..°!,
105 { + "'-... &t
= Y
Q il b .
& 100 | oo Ly ° F10° o
2x105  4x105 g®
10° | y - 10°
° (b)
102 - - - - 10°
0 105 2x10% 3x10° 4x10°
1/T

FIG. 7. The temperature dependence of the structural relaxation time (filled
circles) and the inverse of the diffusion coefficient (empty squares) for (a)
p = 1.5 and (b) p = 2.0. Inset: rojl/y and D'/7 as a function of inverse tem-
perature, where y is fixed to 2.7.

So far, all simulation data show no sign of peculiarity in
the slow dynamics of the high density GCM at the qualita-
tive level. They are all similar to conventional model glass-
formers. In order to assess the properties of the high density
GCM more quantitatively, we compare the simulation results
with the predictions of MCT. For this purpose, we solve the
MCT equations (2)—(5) by numerically integrating the equa-
tions in a self-consistent manner. As inputs, we used S(k) ob-
tained numerically in Subsection IV A. First, we compute the
MCT transition temperature 7, by solving Eq. (4). The results
are Tc([heory) =2.66x 10 and 3.17 x 10 forp = 1.5and
2.0, respectively. Here, we denote the transition temperature
as Tc(lhemy) in order to emphasize that they are obtained by
solving the MCT equations. The exponent y = 2.7 is also ob-
tained from the MCT solutions.

MCT predicts that both the self-diffusion coefficient and
the structural relaxation time follow the power law D!, 1,
« |T — T,|77 with the same parameters y and 7,. We fit-
ted D! and 1, obtained by simulation with this MCT power
law, using T, as a fitting parameter. We denote it as 7,5™.
By plotting D and 7, against T~!, we found that they
both vanish at the same temperature and we identified 7™
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FIG. 8. 74/tp as a function of the reduced temperature ¢ for the GCM
and KA model. #y is the short-time relaxation time defined by Fj(kmax, f0)
= 0.95.

=2.07 x 107° and 2.68 x 10~° for p = 1.5 and 2.0, respec-
tively (see the insets of Fig. 7). In Fig. 8, we replotted 7, in
Fig. 7 using ¢ = T/T*™ — 1 instead of 1/ 7. The results for
the KA model® are also plotted. These data are scaled by a
time unit, #y, defined by a relaxation time at the short time
scale, F(kmax, ' = to) = 0.95. This figure shows that the re-
laxation times for both the GCM and KA model ride on the
MCT power law for the range of temperatures which the sim-
ulation can access. Collapse of the data of two systems on
a single power law is a reflection that the values of y’s of
both systems are close (y ~ 2.5 for the KA model*’). This
figure also demonstrates that ¢ is a good parameter to mea-
sure the distance from the onset of the glassy slow dynamics
for different systems. Hereafter, we refer to ¢ as the reduced
temperature. In Fig. 5(c), we plotted the simulation data of
(R?(t)) for the KA model at T = 0.475 by shifting the time
unit in such a way that the long time diffusive regime col-
lapses with the data for the GCM at T = 2.93 x 107 and
p = 2.0 whose reduced temperature is about the same. Al-
most perfect collapse of the results for two distinct systems
for the whole time window, including the short time ballistic
behavior and the entry to the plateau regime, suggests that the
slow diffusive behavior of the high density GCM is qualita-
tively similar to that of canonical glassformers at least above
T™_ where our MD simulation can access.

However, there are two noticeable differences between
the high density GCM and conventional model glassform-
ers. First, the MCT transition temperature obtained from fit-
ting the simulation data, 7.*'™, is unprecedentedly close to
the theoretical prediction Tc(theory) for the GCM. The agree-
ment improves as the density increases. The deviation of
TS™ from 7 is only 32% for p = 1.5 and 20% for
p = 2.0. Itis in stark contrast with the KA model for which
T6m = 0.435 and T, = 0.92 with the deviation of more
than 100%.*%° The KA model at 7™ is still a high-
temperature fluid and F;(k, t) decays exponentially without
a sign of two-step relaxation. Contrarily, the GCM at TC(theory)
already lies deep in the region where the plateau of Fi(k, )
is well developed (see Fig. 5(d)). Considerable deviation of

J. Chem. Phys. 135, 054901 (2011)

T5™ from 7Meo) £or conventional model glassformers is
known as one of the serious drawbacks of MCT. These devi-
ations have been attributed to the effect of the activated pro-
cesses in the ragged energy landscapes, which smears out the
clear-cut dynamical transition.’*> Second, the MCT param-
eters 7. and y obtained from fitting simulation data for 7,
match very well with that obtained from the data of D!,
This is also in contrast with the model glassformers, such as
the KA model**° and poly(bi)disperse hard spheres,**>* for
which 7™ (or the transition density p®™) and y obtained
from fitting the simulation data vary depending on the observ-
ables (z, or D) and also on the components (large or small
particles components of the binary systems). These variances
are partly attributed to the presence of strong dynamic het-
erogeneities which decouple the diffusion from the structural
relaxation time, as we shall discuss in Subsection IV D.

The direct evidence that MCT works better for the GCM
than any other model glassformers is the remarkable agree-
ment of the simulated Fi(k, t) with the MCT prediction. In
Figs. 5(b) and 5(d), we plotted the solutions of MCT for ex-
actly the same reduced temperatures ¢ as the simulation data.
Only free parameter is the time unit, which is determined
solely from the short time dynamics. Long time behaviors of
the MCT solution agree very well with the simulation results.
MCT also correctly predicts the exponent of the stretched ex-
ponential relaxation 8. The agreement is striking given that
for other model glassformers, ¢ (and sometimes the wavevec-
tors as well) needs to be adjusted at each temperature to ob-
tain a reasonable fit*®3 (an exception is the four-dimensional
system'?).

C. Intermediate scattering function

Next, we look at the intermediate scattering function
F(k, t). For conventional model glassformers, it is known that
behavior of F(k, t) is qualitatively the same as that of Fy(k, t),
except for the wiggly k-dependence of the nonergodic param-
eter for the former, reflecting the wiggly profiles of the static
structure factor (see the discussion below). Contrarily, for the
high density GCM, F'(k, t) and Fy(k, t) differ from each other
considerably. Figure 9 shows F(k,t) at two wavevectors.
Figure 9(a) is the result at k = k(X 8.4) which is the peak
position of S(k). There, the relaxation behavior of F(k,t) is
very similar to that of Fj(k, t), suggesting that the relaxations
of both functions at the interparticle length scales are dictated
by the same relaxation mechanism. Figure 9(b) is the result at
k = 6.4, which corresponds to a slightly longer length scale
than the interparticle distance. The relaxation of F(k,t) is
very fast and shows no sign of two step relaxation. F(k, t) is
almost fully relaxed at r ~ 10, which is much shorter than the
onset time of the caging where the plateau of (R?(t)) appears
(see Fig. 5). The quick decays are followed by the phonon-like
oscillations and very weak tails persisting over the time scale
of the structural relaxation time. This tail vanishes at smaller
k’s. This behavior is in sharp contrast with the KA model,
where the relaxation time at small wavevectors is comparable
with that at the interparticle distance and the plateau heights
remains finite down to very small wavevectors.”® These
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FIG. 9. The intermediate scattering function at (a) k = 8.4 and (b) k =
6.2. For both panels, p = 2.0 and the temperatures are, from left to right,
T x 10° = 10, 7, 5, 4, 3.4, 3.2, 3, and 2.93. The inset in (b) shows a closeup
of the weak and long tails of the main panel.

results indicate that, in the high density GCM, the large scale
density fluctuations are decoupled from the slow structural
relaxation processes at the shorter length scales.

In order to see this qualitative difference of F'(k, t) of the
GCM more clearly, we plot the k-dependence of the plateau
heights, or the nonergodic parameter, Foo(k) and Fjy (k)
together with the MCT predictions obtained from Eq. (4). In
Fig. 10, we show F(k)/S(k) and F o (k) at p = 2.0 (filled
circles) and the MCT predictions at the same density (solid
lines). It beyond doubt demonstrates that MCT beautifully
captures the vanishing plateau and the decoupling between
the self and collective dynamics at small wavevectors. One
observes that F(k)/S(k) above kun.x remains compatible
with that of F; o (k), while keeping a wiggly behavior charac-
teristic of the collective density fluctuations. Absence of slow
dynamics at small k’s is a consequence of the anomalous
structural properties inherent in the high density GCM. In
Subsection IV A, we discussed that the static structure factor
at the small wavevectors, or the compressibility, is extremely
small compared with those of ordinary model glassformers.
This makes the amplitude of the memory kernel at small
k’s negligibly small (see Eq. (3)). Consequently, the large
scale fluctuations decouple from the fluctuations at the length
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FIG. 10. Nonergodic parameters for the collective part Fuo(k)/S(k) (upper
panel) and self part Fy o (k) (lower panel) of the intermediate scattering func-
tions. Filled circles are the simulation data and solid lines are the MCT solu-
tions. The dotted line in the lower panel is a fit by a Gaussian function.

scales of the interparticle distance which trigger the glassy
slow dynamics. We argue that this decoupling between small
and long length scales should be commonly observed for the
systems with small compressibilities which are an universal
feature of the dense and long ranged interaction systems
including the Coulomb interaction systems as predicted in
the framework of MCT.%’

The nonergodic parameters in Fig. 10 exhibit another
subtle but noticeable feature which may have relevance to
fundamental problems of MCT as the mean field description
of the glass transition. Although MCT reproduces the overall
behaviors of the nonergodic parameters for both Fi,(k)/S(k)
and F; o (k), its prediction systematically overestimates the
simulation results at the intermediate wavevectors (in the
range of, say, 5 <k <20). As shown in Fig. 10(b), we
find that the simulation data for Fj ..(k) is well fitted by a
Gaussian function, whereas the MCT nonergodic parameter
has a small but non-negligible shoulder which the Gaussian
function cannot fit. This shoulder is reminiscent of those ob-
served in the MCT solution for hard sphere glasses in large
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054901-10  A. Ikeda and K. Miyazaki

spatial dimensions.»® There, we have found that the devi-
ation from the Gaussian function for Fj ,.(k) increases as
the dimension d increases. This observation has led us to
conclude that MCT is not rigorously a bona fide mean field
theory.> This glitch of MCT which we found in one of the
mean field limits, i.e., the high d limit, could also show up in
another mean field limit, that is, the long-ranged interaction
limit, which is realized in the high density limit of the ultra-
soft potential systems, such as the GCM. This may explain
the shoulder of the Fs (k) in Fig. 10(b). Remember that the
anomalously small S(k) at small k’s is also due to the long-
ranged interaction. Interestingly, this small S(k) may explain
the anomalous shoulder of the MCT solution. By artificially
enhancing the amplitude of S(k) at small k’s by a minute
amount and plugging the modified S(k) into the MCT equa-
tion, we find that the nonergodic parameter Fi (k) at small
k’s jumps from zero to finite values. At the same time, the
shoulder of F; (k) at the intermediate wavevectors disap-
pears and MCT’s F (k) gets closer to the simulation re-
sults. This observation implies that the long range interaction
affects the static properties of the large length scales, which
eventually amplifies the putative non-Gaussian behaviors of
the MCT solution. A subtle interplay between the long and
short length fluctuations may be quite common for the glass
or/and jamming transition: For example, the hyper-uniformity
(vanishing S(k) at small k) and the diverging radial distribu-
tion function at the contact length » = o are known to be the
two facets of a universal character of the jamming transition.*®

D. Violation of Stokes-Einstein relation

For many glassformers, the SE relation D =~ T /5, where
n is the shear viscosity, is violated near the glass transition
point and the violation is believed to be the manifestation of
spatially heterogeneous dynamics which grows as the temper-
ature is lowered.> Indeed, MCT cannot capture the SE viola-
tion due to its mean field character. In this section, we show
that the SE violation for the high density GCM is suppressed.
In Fig. 11(a), we plot Dz, for p = 1.5 and 2.0 normalized
by the values at a high temperature, as a function of ¢. Note
that Dt, instead of Dn has been plotted, because 1 and t,
are roughly proportional to each other. In the same figure, we
have also plotted the results for the large and small particles
for the KA model.* Tt is obvious that the variations of D1,
for the GCM are much weaker than that of the KA model.
Similar suppression of the SE violation was observed in the
four-dimensional hard sphere system.'?

7, was defined by Fi(k,1,) = el at k =kpay. In
order to study the length scales which are relevant to the SE
violation, we generalize the structural relaxation time to the
k-dependent form, t(k), defined by Fi(k, r(k)) = e~'. Note
that 7, = T(kmax). In the small wavevector limit, the self in-
termediate scattering function behaves as Fi(k, r) = e~ DKt
Therefore, (k) ~1/Dk*> as k— 0. In the opposite
limit, the system should behave as an ideal gas, so that
Fy(k,t) = e BTC/m  Thus, (k) oc 1/k as k — 00.%
Figure 11(b) shows Dk’ (k) as a function of k for p = 2.0
and several temperatures. Similar analysis for the KA model
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FIG. 11. (a) Reduced-temperature dependence of Dz, at p = 1.5 (dia-
monds) and 2.0 (squares). The results for the KA model are also plotted (tri-
angles). (See Ref. 45.) All results are normalized by those at a high temper-
ature (DTy)gef. (b) Dk2z(k) for T x 10° = 7.0 (circles), 4.0 (diamonds),
and 2.93 (squares) at p = 2.0. The arrow indicates kmax, the first peak of
S(k).

has been done by Flenner et al.*’ At a high temperature
T = 7.0 x 107° where the two-step relaxation of F(k,t)
is set off (see Fig. 5(d)), Dk*t(k) is nearly constant and
almost 1 at small wavevectors up to knax. It then decreases
as k increases further, followed by a turn over to a mildly
increasing function. The decrease is a reflection of the vanish-
ing of the cages at length scales shorter than the interparticle
distance. The increase at larger k is a crossover to the ideal gas
limit where Dk%t(k) o< k. The qualitative behavior remains
unchanged at T = 4.0 x 1075, but the drop at k > kpay iS
more pronounced, reflecting the stronger cage effect at lower
temperatures. At the lowest temperature 7 = 2.93 x 107°
which corresponds to about & &~ 0.075, the drop at k 2 kmax
is more dramatic. Furthermore, slight positive bump at 3 < k
< kmax is observed. This deviation corresponds to a weak SE
violation observed in Fig. 11(a). This behavior is noticeably
different from that for the KA model for which Dk?t(k) sig-
nificantly increases as k increase before dropping near kpay.*’
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E. Non Gaussian dynamics

Another good measure to monitor the extent of the de-
parture from the mean field behavior is the non-Gaussianity
of the dynamics. At high temperatures, Fi(k, ) or its real
space expression, G4(r, 1) = Y. (8(|R;(t) — R:(0)| — r)), also
known as the van Hove function, becomes almost a Gaussian
function. However, as the temperature is lowered to the super-
cooled regime, this function substantially deviates from the
Gaussian. This deviation is also considered to be a manifes-
tation of dynamic heterogeneities. To quantify this, it is com-
mon to introduce the non-Gaussian parameter defined by

3(RY(1))

a(t) = SR 1, (10)
where (R*(1)) = N~} Z,ﬂﬁi(f) — I%,-(O)l“). In Fig. 12(a), we
plot a(¢) for p = 2.0 at several temperatures. It shows typi-
cal behaviors of the supercooled liquids, characterized by pro-
nounced peaks at # near or slightly before 7, whose heights in-
crease as the temperature decreases. However, the heights of
the peaks are considerably lower than other model glassform-
ers at the comparable reduced temperatures ¢. Figure 12(b)
shows the temperature dependence of the maximum value of
the non-Gaussian parameter «,,,, for both p = 1.5 and 2.0.
The results for the KA model are also plotted.* Similar to the
result for the SE violation, «,,,, of the GCM is far smaller
than that of the KA model. Furthermore, one observes that
Upmax for p = 2.0 is slightly smaller than that for p = 1.5.
These results suggest that the dynamic heterogeneities are
suppressed for the GCM and the suppression is stronger at
higher densities. This is another collateral support that the
high density GCM is more “mean-field-like” than other glass-
formers.

More direct evidence that the dynamics of the high den-
sity GCM is closer to a Gaussian process and dynamic hetero-
geneities are weaker can be obtained by monitoring the prob-
ability distribution of the particle displacement r, denoted as
P(log,or;t). P(log,yr;t) is related to the van Hove function
Gs(r, l) by49,61,62

Y

If the dynamics is purely a Gaussian process, G(r, t) also
becomes a Gaussian function:

3/2 Lo
G,(r. 1) = =3/ 2R)
0 <2n<R2(r>>> ‘
From Egs. (11)and (12), P(log,,r;t) becomes a function of

solely r//{R2(t));

P(log,yr;t) = (In10)4x <

P(log,y ;1) = (In 10)47r3G(r, 1).

(12)

3r? )3/2 o3 /URD)

27 (R2(1)) '
(13)
Thus, the shape of P(log,, r;t) for a Gaussian process should
be unchanged as ¢ is varied, but only shifted if plotted as a
function of log, r. The peak height should be a constant value
of 2.13. In Fig. 13, we plotted the simulated P(log,,r;t) for
p = 2.0 at the two temperatures; T = 7.0 x 107% (s = 1.2)
and T =2.93 x 107 (¢ ~ 0.075). The high temperature re-
sult in Fig. 13(a) shows that P(log,,r;?) is almost given by
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FIG. 12. (a) The non-Gaussian parameter «(t) for 7 x 10° = 10, 7, 5, 4,
34, 3.2, 3, and 2.93 at p = 2.0. (b) The temperature dependence of the
maximum value of a(t) at p = 1.5 (diamonds) and 2.0 (squares). The results
for the large (up triangles) and small (down triangles) particles of the KA
model are also plotted. (See Ref. 45.)

Eq. (13); the shape of the function is almost Gaussian and the
peak height remains very close to 2.13 over the long time. On
the other hand, the low temperature result in Fig. 13(b) shows
that the peak height of the function becomes lower and the
width becomes slightly larger at r ~ t,. This non-Gaussian
behavior at the beta to alpha relaxation time regime is a com-
mon property of P(log;,r;t) at a mildly supercooled state.
Note that, however, the extent of the non-Gaussianity shown
in Fig. 13(b) is much weaker than that of other glassform-
ers, such as the KA model.*> P(log,,r;t) for typical model
glassformers is known to split into the binodal shape at low
temperatures, corresponding to a separation of the constituent
particles into the mobile and immobile ones. This is one of
the most salient feature of the dynamic heterogeneities. The
peak of P(log,,r;t) in Fig. 13(b) does not show any hint to
split into the binodal shape. P(log,r;¢) of the KA model
at ¢ = 0.08 (T = 0.47 in the LJ unit), a comparable reduced
temperature as that of Fig. 13(b), is completely separated to
the two peaks, corresponding to the distribution of mobile
and immobile particles. The decrease of the peak height of
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FIG. 13. The probability distribution of the logarithm of the particle dis-
placements. (a) The results for 7 =7.0 x 107° and p = 2.0. From left
to right, + = 44, 180, 512, 1024, 2896, and 5792. (b) The results for
T =293 x 107% and p = 2.0. From left to right, + = 500, 32000, 181000,
362000, 1448000, and 4096000.

P(log,,r;t) in Fig. 13(b) is compatible with that of the KA
model at much higher temperature, ¢ = 0.38 (T = 0.6 in the
LJ unit).*” Above results strongly suggest that the dynamics
of the high density GCM is more Gaussian-like than that of
the conventional model glassformers and the dynamic hetero-
geneities are strongly suppressed.

V. SUMMARY AND OUTLOOK

In this paper, we presented the detailed analysis of dy-
namics of the high density GCM. The results are summarized
below.

(i) The crystal nucleation becomes slower as the density
increases. Analysis of the two orientational bond order
parameters, g4 and gg, reveals that the crystal structure
is bece at all densities beyond the re-entrant point.

J. Chem. Phys. 135, 054901 (2011)

(i) The system which failed to crystallize shows clear two-
step and stretched exponential relaxation in the (both
self and collective) intermediate scattering functions,
which is the hallmark of the supercooled fluid near the
glass transition point. All dynamical properties which
we have analyzed are well described by MCT. First, the
temperature dependence of the diffusion coefficient and
the structural relaxation time is well fitted by the MCT
power law. The parameter 7*™ used to fit the simula-
tion data is unprecedentedly close to the theoretical pre-
diction. The time dependence of the self intermediate
scattering function F(k, t) is well fitted by MCT, us-
ing the reduced temperature ¢ as a sole parameter. Fur-
thermore, the nonergodic parameters for both collec-
tive and self intermediate scattering functions, Fi (k)
and F; o (k), are well described MCT. Here, we find
two noticeable differences from the typical glassform-
ers. First, the shape of F (k) is qualitatively differ-
ent from Fj (k) at small wavevectors regime, where
F(k, t) decays very fast and the nonergodic parameter
vanishes, whereas Fj(k, t) decays very slowly and its
nonergodic parameter remains finite down to k = 0.
We conjecture that this decoupling of the collective den-
sity dynamics from the single particle dynamics is uni-
versal for the systems with the long-ranged interactions.
This indicates that the large-scale density fluctuation is
decoupled to the slow structural relaxation processes.
Similar decoupling has been predicted from the MCT
analysis of the systems with the power law interactions
v(r) ~ 1/r" with small n.%” Second, the agreement be-
tween MCT and simulation for F; (k) is satisfactory
but conceivably worse than those for other model glass-
formers, such as the KA model.*%%° We found a weak
shoulder at the intermediate wavevectors. This shoulder
is reminiscent of those found in the MCT analysis of the
hard sphere glasses at the high dimensions.> We conjec-
ture that the anomalous shoulders are the deficiency of
MCT which appears only at the mean-field limit.

(iii) Dynamic heterogeneities are suppressed in the high
density GCM. The SE violation is very weak and the
peak height of the non-Gaussian parameter is much
lower than the conventional model glassformers at the
comparable reduced temperatures. The weak dynamic
heterogeneities of the high density GCM were most
obvious from the observation of the probability distri-
bution of the particle displacement P(log;,r;t). We
find no obvious change in the shape of P(log,,r;t)
which remains almost Gaussian, though the width
slightly widens around the beta to alpha relaxation time
regimes. Even at the lowest reduced temperature, at
which the typical model glassformers exhibit the very
clear binodal distribution of mobile and immobile par-
ticles, due to the growing dynamic heterogeneities, the
probability distribution of the GCM remains to be a sin-
gle peak function.

We conclude that the high density GCM is the ideal
model system to study the glass transition. It is not only
the cleanest glass model in which it is the one-component
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system, but it is also the closest to the mean-field model in
which dynamic heterogeneities are strongly suppressed and
the way how MCT predicts simulation results is synchronized
with the way it does for the high dimensional systems. The
mean-field nature comes from the long-range nature of the
interaction potential, which is caused by the overlapping of
the particles at the high densities. Both the excellent agree-
ment with MCT and small deviation from MCT (the shoulder
of F; ~(k)) also lead us to reconsider the validity of MCT as
the the mean field theory of the glass transition. Mean-field
models of the glass transition have been proposed and ana-
lyzed by taking the long-range limit of the interactions,?” but
it has never been realized in the simulation box. The another
mean field limit, i.e., the high dimension limit, is another
interesting challenge but given the current central processing
unit power, going beyond d = 5 would be unrealistic. In this
sense, the high density GCM might be the first realistic fluid
model which may be able to bridge the gap between the finite
dimensional system with the mean-field limit. It is tempting
to consider the high density limit of the GCM where the
small parameter 1/p may make the analytical treatment of
especially the static/thermodynamic parameters tractable and
leads us the exact mode-coupling theory (or alike).
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