149 research outputs found

    Associação de medroxiprogesterona ao protocolo Ovsynch para inseminação artificial em tempo fixo de búfalas cíclicas (Bubalus bubalis) criadas na Amazônia Oriental.

    Get PDF
    O presente estudo visou avaliar os efeitos da associação da medroxiprogesterona (análogo sintético da progesterona) ao protocolo Ovsynch sobre o crescimento folicular, a ovulação e a taxa de concepção de búfalas criadas na Amazônia Oriental (Tracuateua-PA). Vinte e sete fêmeas adultas (G1 n=14 e G2 n=13), cíclicas, sem bezerro ao pé e com ECC 3,5 foram submetidas a Ovsynch. Os animais do G2 receberam 60 mg de medroxiprogesterona entre D0 e D7 (D0=início do tratamento). A ultra-sonografia ovariana foi realizada nos D 0, 7, 9 e 10. O contingente de folículos pequenos diferiu no D7 (G1: 4,57±0,60 versus G2: 6,54±0,67; P=0,05). Tempo e tratamento influenciaram o diâmetro folicular no D7. O crescimento do folículo dominante entre D7 e D9 foi maior nos animais tratados (G1: 2,05±0,49 mm/dia versus 3,48±0,41 mm/dia; P0,05). Os achados sugerem que a medroxiprogesterona (1) aumenta recrutamento folicular e retarda o crescimento dos folículos com diâmetro maior que 5,0 mm entre D0 e D7; (2) sua retirada incrementa em 1,7 vezes o crescimento folicular do D7 ao D9; (3) pode contribuir para a ovulação de folículos maiores e, em tese, para maior formação de tecido luteínico; (4) não promove ovulação precoce após o Ovsynch; (5) não eleva as taxas de concepção após sincronização de fêmeas cíclicas e com bom escore corporal, devendo ser avaliada para uso em fêmeas acíclicas ou com ECC mais baixo.Disponível também on-line

    How integrated are neurology and palliative care services? Results of a multicentre mapping exercise

    Get PDF
    Background: Patients affected by progressive long-term neurological conditions might benefit from specialist palliative care involvement. However, little is known on how neurology and specialist palliative care services interact. This study aimed to map the current level of connections and integration between these services. Methods: The mapping exercise was conducted in eight centres with neurology and palliative care services in the United Kingdom. The data were provided by the respective neurology and specialist palliative care teams. Questions focused on: i) catchment and population served; ii) service provision and staffing; iii) integration and relationships. Results: Centres varied in size of catchment areas (39-5,840 square miles) and population served (142,000-3,500,000). Neurology and specialist palliative care were often not co-terminus. Service provisions for neurology and specialist palliative care were also varied. For example, neurology services varied in the number and type of provided clinics and palliative care services in the settings they work in. Integration was most developed in Motor Neuron Disease (MND), e.g., joint meetings were often held, followed by Parkinsonism (made up of Parkinson’s Disease (PD), Multiple-System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP), with integration being more developed for MSA and PSP) and least in Multiple Sclerosis (MS), e.g., most sites had no formal links. The number of neurology patients per annum receiving specialist palliative care reflected these differences in integration (range: 9–88 MND, 3–25 Parkinsonism, and 0–5 MS). Conclusions: This mapping exercise showed heterogeneity in service provision and integration between neurology and specialist palliative care services, which varied not only between sites but also between diseases. This highlights the need and opportunities for improved models of integration, which should be rigorously tested for effectiveness

    Occurrence of L-iduronic acid and putative D-glucuronyl C5-epimerases in prokaryotes

    Get PDF
    Glycosaminoglycans (GAGs) are polysaccharides that are typically present in a wide diversity of animal tissue. Most common GAGs are well-characterized and pharmaceutical applications exist for many of these compounds, e.g. heparin and hyaluronan. In addition, also bacterial glycosaminoglycan-like structures exist. Some of these bacterial GAGs have been characterized, but until now no bacterial GAG has been found that possesses the modifications that are characteristic for many of the animal GAGs such as sulfation and C5-epimerization. Nevertheless, the latter conversion may also occur in bacterial and archaeal GAGs, as some prokaryotic polysaccharides have been demonstrated to contain L-iduronic acid. However, experimental evidence for the enzymatic synthesis of L-iduronic acid in prokaryotes is as yet lacking. We therefore performed an in silico screen for D-glucuronyl C5-epimerases in prokaryotes. Multiple candidate C5-epimerases were found, suggesting that many more microorganisms are likely to exist possessing an L-iduronic acid residue as constituent of their cell wall polysaccharides

    Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    Get PDF
    BACKGROUND: Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. METHODS: The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). RESULTS: The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. CONCLUSION: These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS

    Histidine-Rich Glycoprotein Protects from Systemic Candida Infection

    Get PDF
    Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG), an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg−/− mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity

    All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers

    Get PDF
    Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism

    Super-silent FRET Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils

    Get PDF
    Abstract Serine proteases are released by neutrophils to act primarily as antimicrobial proteins but excessive and unbalanced serine protease activity results in serious host tissue damage. Here the synthesis of a novel chemical sensor based on a multi-branched fluorescence quencher is reported. It is super-silent, exhibiting no fluorescence until de-quenched by the exemplar serine protease human neutrophil elastase, rapidly enters human neutrophils, and is inhibited by serine protease inhibitors. This sensor allows live imaging of intracellular serine protease activity within human neutrophils and demonstrates that the unique combination of a multivalent scaffold combined with a FRET peptide represents a novel and efficient strategy to generate super-silent sensors that permit the visualisation of intracellular proteases and may enable point of care whole blood profiling of neutrophils
    corecore