24 research outputs found
Text Mining the History of Medicine
Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform
Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error
BACKGROUND: Here, we outline a method of applying existing machine learning (ML) approaches to aid citation screening in an on-going broad and shallow systematic review of preclinical animal studies. The aim is to achieve a high-performing algorithm comparable to human screening that can reduce human resources required for carrying out this step of a systematic review. METHODS: We applied ML approaches to a broad systematic review of animal models of depression at the citation screening stage. We tested two independently developed ML approaches which used different classification models and feature sets. We recorded the performance of the ML approaches on an unseen validation set of papers using sensitivity, specificity and accuracy. We aimed to achieve 95% sensitivity and to maximise specificity. The classification model providing the most accurate predictions was applied to the remaining unseen records in the dataset and will be used in the next stage of the preclinical biomedical sciences systematic review. We used a cross-validation technique to assign ML inclusion likelihood scores to the human screened records, to identify potential errors made during the human screening process (error analysis). RESULTS: ML approaches reached 98.7% sensitivity based on learning from a training set of 5749 records, with an inclusion prevalence of 13.2%. The highest level of specificity reached was 86%. Performance was assessed on an independent validation dataset. Human errors in the training and validation sets were successfully identified using the assigned inclusion likelihood from the ML model to highlight discrepancies. Training the ML algorithm on the corrected dataset improved the specificity of the algorithm without compromising sensitivity. Error analysis correction leads to a 3% improvement in sensitivity and specificity, which increases precision and accuracy of the ML algorithm. CONCLUSIONS: This work has confirmed the performance and application of ML algorithms for screening in systematic reviews of preclinical animal studies. It has highlighted the novel use of ML algorithms to identify human error. This needs to be confirmed in other reviews with different inclusion prevalence levels, but represents a promising approach to integrating human decisions and automation in systematic review methodology
Information retrieval and text mining technologies for chemistry
Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European
Community’s Horizon 2020 Program (project reference:
654021 - OpenMinted). M.K. additionally acknowledges the
Encomienda MINETAD-CNIO as part of the Plan for the
Advancement of Language Technology. O.R. and J.O. thank
the Foundation for Applied Medical Research (FIMA),
University of Navarra (Pamplona, Spain). This work was
partially funded by Consellería
de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic
funding of UID/BIO/04469/2013 unit and COMPETE 2020
(POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi
for useful feedback and discussions during the preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
Discovering and visualizing indirect associations between biomedical concepts
Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: [email protected]