477 research outputs found

    Elevation gradients of lemur abundance emphasise the importance of Madagascar’s lowland rainforest for the conservation of endemic taxa

    Get PDF
    1. Elevation gradients correlate with changes in several environmental conditions and are known to be related to animal abundance. Animals in regions with a naturally limited extent of lowland rainforest are expected to have evolved adaptations to intermediate elevations that provided a stable environment during their evolution. 2. Since the lowland rainforest of Madagascar has a limited extent and suffers from increasing anthropogenic pressure, it is essential to understand how well species tolerate intermediate and high elevations. In this study, we aim to quantify the relationship between lemur abundance and elevation in the eastern rainforest of Madagascar. 3. We correlated abundance data on 26 lemur species (10 genera), including 492 records from 26 studies, with elevation. We analysed the consistency of correlations across species with a meta‐analytical approach. We controlled for species’ body mass, elevational range and median elevation. We then ran generalised linear mixed models to determine whether lemur abundance was related to elevation, body mass, plant productivity and anthropogenic disturbance. 4. Overall, the abundance of lemur species in Malagasy rainforests was negatively correlated with elevation, and species occupying broader elevational ranges showed stronger correlations. Body mass was not related to species’ tolerance of high elevations. Even though several lemur species are able to occupy the entire elevation gradient, the few remaining patches of lowland rainforests host lemur species at greater abundances than other sites. Abundance across species was negatively related to body mass, elevation and seasonality in plant productivity and positively related to plant productivity. 5. Despite the ecological flexibility of many lemur species, the remnant patches of lowland rainforests host the highest levels of lemur abundance and are key to lemur conservation. It is crucial to preserve this priority habitat both for biodiversity conservation and for our understanding of lemur adaptations

    Structure and regional representativeness of the herpetofauna from Parque Estadual da Serra de Caldas Novas, Cerrado, Central Brazil

    Get PDF
    Amphibians and reptiles are diversified in the Cerrado biome but have been threatened by habitat loss and fragmentation, as well as lack of understanding of their distribution. Therefore, collection and organization of information about species in natural environments are essential for conservation, especially in Protected areas (PAs) and their adjacent zones. We present information about the composition and structure of the herpetofauna from Parque Estadual da Serra de Caldas Novas (PESCAN) and its representativeness in comparison to other PAs in the Cerrado. Fieldwork was conducted in 12 sampling sites from February 2009 to February 2010, using active search and pitfall traps. We recorded 41 species of amphibians, with greatest richness in sites with open vegetation and water bodies. Reptiles were represented by 32 species, with the greatest species richness in cerrado open environments. Both amphibian and reptile communities were more similar to those from geographically closer PAs and located in the central region of the Cerrado (State of Goiås and Distrito Federal). The PESCAN holds 24.85% and 17.98% of amphibians and reptiles species occurring in Cerrado PAs, respectivelly. This large representativeness and the high number of endemisms (18 amphibians and 7 reptiles) emphasize the importance of the PESCAN, together with other PAs, for the maintenance of regional biodiversity. In addition, we also encourage researches evaluating amphibian and reptile communities outside PAs, such as legal reserves, and we suggest new approaches to study the biodiversity of protected areas. Š 2019, Š 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    IUCN's encounter with 007: safeguarding consensus for conservation

    Get PDF
    A controversy at the 2016 IUCN World Conservation Congress on the topic of closing domestic ivory markets (the 007, or so-called James Bond, motion) has given rise to a debate on IUCN's value proposition. A cross-section of authors who are engaged in IUCN but not employed by the organization, and with diverse perspectives and opinions, here argue for the importance of safeguarding and strengthening the unique technical and convening roles of IUCN, providing examples of what has and has not worked. Recommendations for protecting and enhancing IUCN's contribution to global conservation debates and policy formulation are given

    How many Pygmy Marmoset (Cebuella Gray, 1870) species are there? A taxonomic re-appraisal based on new molecular evidence

    Get PDF
    The pygmy marmoset, Cebuella pygmaea, the smallest of the New World monkeys, has one of the largest geographical distributions of the Amazonian primates. Two forms have been recognized: Cebuella pygmaea pygmaea (Spix, 1823), and C. p. niveiventris Lönnberg, 1940. In this study, we investigated if the separation of pygmy marmosets into these two clades can be corroborated by molecular data. We also examine and compare coloration of the pelage in light of the new molecular results. We analyzed the mtDNA cytochrome b gene and, for the first time for any Neotropical primate, we used a reduced representation genome sequencing approach (ddRADseq) to obtain data for recently collected, geographically representative samples from the Rio Japurá, a northern tributary of the Rio Solimões and from the Javarí, Jutaí, Juruá, Madeira and Purus river basins, all tributaries south of the Solimões. We estimated phylogenies and diversification times under both maximum likelihood and Bayesian inference criteria. Our analysis showed two highly supported clades, with intraclade divergences much smaller than interclade divergences, indicating two species of Cebuella: one from the Rio Japurá and one to the south of Solimões. The interpretation of our results in light of the current taxonomy is not trivial however. Lönnberg stated that the type of Spix’s pygmy marmoset (type locality ‘near Tabatinga’) was obtained from the south of the Solimões, and his description of the distinct niveiventris from Lago Ipixuna, south of the Solimões and several kilometres east of Tabatinga, was based on a comparison with specimens that he determined as typical pygmaea that were from the upper Rio Juruá (south of the Solimões). As such it remains uncertain whether the name pygmaea should be applicable to the pygmy marmosets north of the Rio Solimões (Tabatinga type locality) or south (near Tabatinga but across the Solimões). Finally, our analysis of pelage coloration revealed three phenotypic forms: 1) south of the Rio Solimoes, 2) Eirunepé-Acre, upper Juruá basin; and 3) Japurá. More samples from both sides of Solimões in the region of Tabatinga will be necessary to ascertain the exact type locality for Spix’s pygmaea and to resolve the current uncertainties surrounding pygmy marmoset taxonomy

    A Climatic Stability Approach to Prioritizing Global Conservation Investments

    Get PDF
    Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term

    Use of Mangroves by Lemurs

    Get PDF
    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar’s lemurs are a top global conservation priority with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search, and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in five families using mangroves, representing more than 20 % of lemur species and over 50 % of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping and travelling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognised, and merit greater attention from primate researchers and conservationists in Madagascar

    The role of protected areas in the avoidance of anthropogenic conversion in a high pressure region : a matching method analysis in the core region of the brazilian cerrado

    Get PDF
    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit

    Species Richness and Range Size of the Terrestrial Mammals of the World: Biological Signal within Mathematical Constraints

    Get PDF
    We explore global spatial diversity patterns for terrestrial mammals using as a tool range-diversity plots. These plots display simultaneously information about the number of species in localities and their spatial covariance in composition. These are highly informative, as we show by linking range-diversity plots with maps and by highlighting the correspondences between well defined regions of the plots with geographical regions or with taxonomic groups. Range-diversity plots are mathematically constrained by the lines of maximum and minimum mean covariance in species composition. We show how regions in the range-diversity plot corresponding to the line of maximum covariance correspond to large continental masses, and regions near the lower limit of the range-diversity plot correspond to archipelagos and mountain ranges. We show how curves of constant covariance correspond to nested faunas. Finally, we show that the observed distribution of the covariance range has significantly longer tails than random, with clear geographic correspondences. At the scale of our data we found that range-diversity plots reveal biodiversity patterns that cannot be replicated by null models, and correspond to conspicuous terrain features and taxonomic groupings

    A Severe Lack of Evidence Limits Effective Conservation of the World's Primates

    Get PDF
    Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon
    • …
    corecore