422 research outputs found
Parallelization of Markov chain generation and its application to the multicanonical method
We develop a simple algorithm to parallelize generation processes of Markov
chains. In this algorithm, multiple Markov chains are generated in parallel and
jointed together to make a longer Markov chain. The joints between the
constituent Markov chains are processed using the detailed balance. We apply
the parallelization algorithm to multicanonical calculations of the
two-dimensional Ising model and demonstrate accurate estimation of
multicanonical weights.Comment: 15 pages, 5 figures, uses elsart.cl
Multi-Overlap Simulations for Transitions between Reference Configurations
We introduce a new procedure to construct weight factors, which flatten the
probability density of the overlap with respect to some pre-defined reference
configuration. This allows one to overcome free energy barriers in the overlap
variable. Subsequently, we generalize the approach to deal with the overlaps
with respect to two reference configurations so that transitions between them
are induced. We illustrate our approach by simulations of the brainpeptide
Met-enkephalin with the ECEPP/2 energy function using the global-energy-minimum
and the second lowest-energy states as reference configurations. The free
energy is obtained as functions of the dihedral and the root-mean-square
distances from these two configurations. The latter allows one to identify the
transition state and to estimate its associated free energy barrier.Comment: 12 pages, (RevTeX), 14 figures, Phys. Rev. E, submitte
Temperature dependence of ESR intensity for the nanoscale molecular magnet V15
The electron spin resonance (ESR) of nanoscale molecular magnet is studied. Since the Hamiltonian of has a large
Hilbert space and numerical calculations of the ESR signal evaluating the Kubo
formula with exact diagonalization method is difficult, we implement the
formula with the help of the random vector technique and the Chebyshev
polynominal expansion, which we name the double Chebyshev expansion method. We
calculate the temperature dependence of the ESR intensity of and
compare it with the data obtained in experiment. As another complementary
approach, we also implement the Kubo formula with the subspace iteration method
taking only important low-lying states into account. We study the ESR
absorption curve below by means of both methods. We find that side
peaks appear due to the Dzyaloshinsky-Moriya interaction and these peaks grows
as temperature decreases.Comment: 9 pages, 4 figures. To appear in J. Phys. Soc. Jpn. Supp
Protein folding mediated by solvation: water expelling and formation of the hydrophobic core occurs after the structure collapse
The interplay between structure-search of the native structure and
desolvation in protein folding has been explored using a minimalist model.
These results support a folding mechanism where most of the structural
formation of the protein is achieved before water is expelled from the
hydrophobic core. This view integrates water expulsion effects into the funnel
energy landscape theory of protein folding. Comparisons to experimental results
are shown for the SH3 protein. After the folding transition, a near-native
intermediate with partially solvated hydrophobic core is found. This transition
is followed by a final step that cooperatively squeezes out water molecules
from the partially hydrated protein core.Comment: Proceedings of the National Academy of Science, 2002, Vol.99. 685-69
Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway
RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications
Secondary-Structure Design of Proteins by a Backbone Torsion Energy
We propose a new backbone-torsion-energy term in the force field for protein
systems. This torsion-energy term is represented by a double Fourier series in
two variables, the backbone dihedral angles phi and psi. It gives a natural
representation of the torsion energy in the Ramachandran space in the sense
that any two-dimensional energy surface periodic in both phi and psi can be
expanded by the double Fourier series. We can then easily control
secondary-structure-forming tendencies by modifying the torsion-energy surface.
For instance, we can increase/decrease the alpha-helix-forming-tendencies by
lowering/raising the torsion-energy surface in the alpha-helix region and
likewise increase/decrease the beta-sheet-forming tendencies by
lowering/raising the surface in the beta-sheet region in the Ramachandran
space. We applied our approach to AMBER parm94 and AMBER parm96 force fields
and demonstrated that our modifications of the torsion-energy terms resulted in
the expected changes of secondary-structure-forming-tendencies by performing
folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure
Computing Chemical Potential using the Phase Space Multi-histogram Method
We present a new simulation method to calculate the free energy and the
chemical potential of hard particle systems. The method relies on the
introduction of a parameter dependent potential to smoothly transform between
the hard particle system and the corresponding ideal gas. We applied the method
to study the phase transition behavior of monodispersed infinitely thin square
platelets. First, we equilibrated the square platelet system for different
reduced pressures with a usual isobaric Monte Carlo (MC) simulation and
obtained a reduced pressure-chemical potential plot. Then we introduce the
parametrized potential to interpolate the system between the ideal gas and the
hard particles. After selecting the potential, we performed isochoric MC runs,
ranging from the ideal gas to the hard particle limit. Through an iterative
procedure, we compute the free energy and the chemical potential of the square
platelet system by evaluating the volume of the phase space attributed to the
hard particles, and then we find the coexistence pressure of the system. Our
method provides an intuitive approach to investigate the phase transitions of
hard particle systems
The relationship of the clinicopathological characteristics and treatment results of post-Chornobyl papillary thyroid microcarcinomas with the latency period and radiation exposure
IntroductionA worldwide increase in the incidence of thyroid cancer during the last decades is largely due to papillary thyroid microcarcinomas (MPTCs), which are mostly low-risk tumors. In view of recent clinical recommendations to reduce the extent of surgery for low-risk thyroid cancer, and persisting uncertainty about the impact of radiation history, we set out to address whether clinicopathological characteristics and prognosis of post-Chornobyl MPTCs were changing with regard to: i) the latency period, ii) probability of causation (POC) of a tumor due to radiation, and iii) tumor size.MethodsPatients (n = 465) aged up to 50 years at diagnosis who lived in April, 1986 in six northern, most radiocontaminated regions of Ukraine were studied.ResultsLatency period was statistically significantly associated with the reduction of POC level, tumor size and the frequency of fully encapsulated MPTCs. In contrast, the frequency of oncocytic changes and the BRAFV600E mutation increased. Invasive properties and clinical follow-up results did not depend on latency except for a lower frequency of complete remission after postsurgical radioiodine therapy. The POC level was associated with more frequent extrathyroidal extension, and lymphatic/vascular invasion, less frequent oncocytic changes and BRAFV600E, and did not associate with any clinical indicator. Tumor size was negatively associated with the latency period and BRAFV600E, and had a statistically significant effect on invasive properties of MPTCs: both the integrative invasiveness score and its components such as lymphatic/vascular invasion, extrathyroidal extension and lymph node metastases increased. The frequency of total thyroidectomy, neck lymph node dissection and radioiodine therapy also increased with the larger tumor size. The duration of the latency period, POC level or tumor size did not associate with the chance of disease recurrence.DiscussionIn summary, we did not observe overall worsening of the clinicopathological features or treatment results of radiogenic MPTCs that could be associated with the latency period or POC level, suggesting that radiation history did not strongly affect those in the analyzed MPTC patients. However, the increase in the invasive properties with tumor size indicates the need for individual risk stratification for each MPTC patient, regardless of radiation history, for treatment decision-making
Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome
A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define
- …