879 research outputs found
A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics
We consider the problem of extracting safe environments and controllers for
reach-avoid objectives for systems with known state and control spaces, but
unknown dynamics. In a given environment, a common approach is to synthesize a
controller from an abstraction or a model of the system (potentially learned
from data). However, in many situations, the relationship between the dynamics
of the model and the \textit{actual system} is not known; and hence it is
difficult to provide safety guarantees for the system. In such cases, the
Standard Simulation Metric (SSM), defined as the worst-case norm distance
between the model and the system output trajectories, can be used to modify a
reach-avoid specification for the system into a more stringent specification
for the abstraction. Nevertheless, the obtained distance, and hence the
modified specification, can be quite conservative. This limits the set of
environments for which a safe controller can be obtained. We propose SPEC, a
specification-centric simulation metric, which overcomes these limitations by
computing the distance using only the trajectories that violate the
specification for the system. We show that modifying a reach-avoid
specification with SPEC allows us to synthesize a safe controller for a larger
set of environments compared to SSM. We also propose a probabilistic method to
compute SPEC for a general class of systems. Case studies using simulators for
quadrotors and autonomous cars illustrate the advantages of the proposed metric
for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and
Control (2019
Asteroseismological Observations of the Central Star of the Planetary Nebula NGC 1501
We report on a global CCD time-series photometric campaign to decode the
pulsations of the nucleus of the planetary nebula NGC1501. The star is hot and
hydrogen-deficient, similar to the pre-white-dwarf PG 1159 stars. NGC1501 shows
pulsational brightness variations of a few percent with periods ranging from 19
to 87 minutes. The variations are very complex, suggesting a pulsation spectrum
that requires a long unbroken time series to resolve. Our CCD photometry of the
star covers a two-week period in 1991 November, and used a global network of
observatories. We obtained nearly continuous coverage over an interval of one
week in the middle of the run. We have identified 10 pulsation periods, ranging
from 5235 s down to 1154 s. We find strong evidence that the modes are indeed
nonradial g-modes. The ratios of the frequencies of the largest-amplitude modes
agree with those expected for modes that are trapped by a density discontinuity
in the outer layers. We offer a model for the pulsation spectrum that includes
a common period spacing of 22.3 s and a rotation period of 1.17 days; the
period spacing allows us to assign a seismological mass of 0.55+/-0.03 Msun.Comment: 12 pages, AASTEX, 7 tables, 6 EPS figures, to appear in AJ, 12/96
Corrected version repairs table formatting and adds missing Table
Dispersive Optical Interface Based on Nanofiber-Trapped Atoms
We dispersively interface an ensemble of one thousand atoms trapped in the
evanescent field surrounding a tapered optical nanofiber. This method relies on
the azimuthally-asymmetric coupling of the ensemble with the evanescent field
of an off-resonant probe beam, transmitted through the nanofiber. The resulting
birefringence and dispersion are significant; we observe a phase shift per atom
of \,1\,mrad at a detuning of six times the natural linewidth,
corresponding to an effective resonant optical density per atom of 0.027.
Moreover, we utilize this strong dispersion to non-destructively determine the
number of atoms.Comment: 4 pages, 4 figure
Labour Market and Social Policy in Italy: Challenges and Changes. Bertelsmann Policy Brief #2016/02
vEight years after the outbreak of the financial crisis, Italy has still to cope with and
overcome a plethora of economic and social challenges. On top of this, it faces an
unfavourable demographic structure and severe disparities between its northern and
southern regions. Some promising reforms have recently been enacted, specifically
targeting poverty and social exclusion. However, much more remains to be done on
the way towards greater economic stability and widely shared prosperity
A Nanofiber-Based Optical Conveyor Belt for Cold Atoms
We demonstrate optical transport of cold cesium atoms over millimeter-scale
distances along an optical nanofiber. The atoms are trapped in a
one-dimensional optical lattice formed by a two-color evanescent field
surrounding the nanofiber, far red- and blue-detuned with respect to the atomic
transition. The blue-detuned field is a propagating nanofiber-guided mode while
the red-detuned field is a standing-wave mode which leads to the periodic axial
confinement of the atoms. Here, this standing wave is used for transporting the
atoms along the nanofiber by mutually detuning the two counter-propagating
fields which form the standing wave. The performance and limitations of the
nanofiber-based transport are evaluated and possible applications are
discussed
CHD pile performance, Part I:Physical modelling
The Continuous Helical Displacement (CHD) pile is an auger displacement pile developed by Roger Bullivant Ltd in the UK. It has performance characteristics of both displacement and non-displacement piles due to the nature in which it is installed. Based on field experience, it has been shown that the load-settlement performance of the CHD installed in sand exceeds the current design predictions based upon conservative effective pile diameter and design parameters associated with auger bored or continuous flight auger (CFA) cast in-situ piles. In an effort to gain a greater understanding of the performance of the CHD pile compared with more conventional piling techniques, a programme of model pile testing and associated Finite Element Modelling (the subject of a Companion Paper) in sand was undertaken. The model testing programme established that greater shaft resistance may be developed for CHD piles than had originally been considered. Based upon the results of the model testing, recommendations for more appropriate approaches to the selection of end bearing and shaft resistance factors are made to predict ultimate load capacity in sand
Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations
SOTER on ROS: A Run-Time Assurance Framework on the Robot Operating System
We present an implementation of SOTER, a run-time assurance framework for
building safe distributed mobile robotic (DMR) systems, on top of the Robot
Operating System (ROS). The safety of DMR systems cannot always be guaranteed
at design time, especially when complex, off-the-shelf components are used that
cannot be verified easily. SOTER addresses this by providing a language-based
approach for run-time assurance for DMR systems. SOTER implements the reactive
robotic software using the language P, a domain-specific language designed for
implementing asynchronous event-driven systems, along with an integrated
run-time assurance system that allows programmers to use unfortified components
but still provide safety guarantees. We describe an implementation of SOTER for
ROS and demonstrate its efficacy using a multi-robot surveillance case study,
with multiple run-time assurance modules. Through rigorous simulation, we show
that SOTER enabled systems ensure safety, even when using unknown and untrusted
components.Comment: 20th International Conference on Runtime Verificatio
- …
