493 research outputs found

    The Roles of Symbols in Neural-based AI: They are Not What You Think!

    Full text link
    We propose that symbols are first and foremost external communication tools used between intelligent agents that allow knowledge to be transferred in a more efficient and effective manner than having to experience the world directly. But, they are also used internally within an agent through a form of self-communication to help formulate, describe and justify subsymbolic patterns of neural activity that truly implement thinking. Symbols, and our languages that make use of them, not only allow us to explain our thinking to others and ourselves, but also provide beneficial constraints (inductive bias) on learning about the world. In this paper we present relevant insights from neuroscience and cognitive science, about how the human brain represents symbols and the concepts they refer to, and how today's artificial neural networks can do the same. We then present a novel neuro-symbolic hypothesis and a plausible architecture for intelligent agents that combines subsymbolic representations for symbols and concepts for learning and reasoning. Our hypothesis and associated architecture imply that symbols will remain critical to the future of intelligent systems NOT because they are the fundamental building blocks of thought, but because they are characterizations of subsymbolic processes that constitute thought.Comment: 28 page

    Polymorphisms in the SOCS7 gene and glucose homeostasis traits

    Get PDF
    BACKGROUND: SOCS7 is a member of the suppressor of cytokine signaling family of proteins and is expressed in skeletal muscle and islets. SOCS7 deficient mice develop islet hyperplasia in the setting of increased insulin sensitivity and normal glucose tolerance. The objective of this study was to determine if variants in SOCS7 play a role in variation of glucose and insulin levels and the development of type 2 diabetes (T2DM). RESULTS: Five SOCS7 tagging SNPs were genotyped in diabetic and nondiabetic Old Order Amish. A case–control study was performed in T2DM (n = 145) and normal glucose tolerant (n = 358) subjects. Nominal associations were observed with T2DM and the minor alleles for rs8068600 (P = 0.01) and rs8074124 (P = 0.04); however, only rs8068600 remained significant after Bonferroni adjustment for multiple comparisons (P = 0.01). Among nondiabetic Amish (n = 765), no significant associations with glucose or insulin traits including fasting or 2 hour glucose and insulin from the oral glucose tolerance test, insulin or glucose area under the curve, Matsuda Index or HOMA-IR were found for any of the SNPs. CONCLUSION: In conclusion, genetic variants in the SOCS7 gene do not impact variation in glucose homeostasis traits and only minimally impact risk of T2DM in the Old Order Amish. Our study was not able to address whether rare variants that potentially impact gene function might influence T2DM risk

    Randomized Controlled Trial of Mechanical Thrombectomy Versus Catheter-directed Thrombolysis for Acute Hemodynamically Stable Pulmonary Embolism: Rationale and Design of the PEERLESS Study.

    Get PDF
    BACKGROUND The identification of hemodynamically stable pulmonary embolism (PE) patients who may benefit from advanced treatment beyond anticoagulation is unclear. However, when intervention is deemed necessary by the PE patient's care team, data to select the most advantageous interventional treatment option are lacking. Limiting factors include major bleeding risks with systemic and locally delivered thrombolytics and the overall lack of randomized controlled trial (RCT) data for interventional treatment strategies. Considering the expansion of the Pulmonary Embolism Response Team (PERT) model, corresponding rise in interventional treatment, and number of thrombolytic and non-thrombolytic catheter-directed devices coming to market, robust evidence is needed to identify the safest and most effective interventional option for patients. METHODS The PEERLESS study (ClinicalTrials.gov identifier: NCT05111613) is a currently enrolling multinational RCT comparing large-bore mechanical thrombectomy (MT) with the FlowTriever System (Inari Medical, Irvine, CA) vs catheter-directed thrombolysis (CDT). A total of 550 hemodynamically stable PE patients with right ventricular (RV) dysfunction and additional clinical risk factors will undergo 1:1 randomization. Up to 150 additional patients with absolute thrombolytic contraindications may be enrolled into a non-randomized MT cohort for separate analysis. The primary endpoint will be assessed at hospital discharge or 7 days post procedure, whichever is sooner, and is a composite of the following clinical outcomes constructed as a hierarchal win ratio: 1) all-cause mortality, 2) intracranial hemorrhage, 3) major bleeding, 4) clinical deterioration and/or escalation to bailout, and 5) intensive care unit admission and length of stay. The first 4 components of the win ratio will be adjudicated by a Clinical Events Committee, and all components will be assessed individually as secondary endpoints. Other key secondary endpoints include all-cause mortality and readmission within 30 days of procedure and device- and drug-related serious adverse events through the 30-day visit. IMPLICATIONS PEERLESS is the first RCT to compare two different interventional treatment strategies for hemodynamically stable PE and results will inform strategy selection after the physician or PERT determines advanced therapy is warranted

    Large Area Metasurface Lenses in the NIR Region

    Get PDF
    Metasurfaces have revolutionized the definition of compact optics. Using subwavelength periodic structures of nanostructured dielectrics, the refractive index and absorption properties of metasurfaces – which are 2D metamaterials – can manipulate light to a degree not possible with conventional bulk glasses and crystals. The phase, polarization, spin (for circularly polarized light), amplitude and wavelength of light can all be manipulated and crafted to user-specified values to mimic the action of a lens, which we refer to as a metalens (ML). MLs have four major advantages over traditional refractive lenses – superior resolution, lighter weight, miniaturization and cost. Many metasurfaces with useful functionalities have been proposed in recent years, yet although novel in their approach have few real-world applications. One such market is the use within infrared laser systems, such as laser designators. In this work, we demonstrate metasurface lenses working at a wavelength of λ = 1064 nm, with aperture d = 1 mm and four different Fnumbers (focal length f = 0.5, 1, 2 and 5 mm). The lenses are composed of 700nm high a-Si pillars – ranging from 70- 360 nm diameter – which are fabricated using electron beam lithography (EBL) and reactive ion etching processes, on top of a fused silica substrate. Such lenses are shown to have diffraction-limited performance, with focal spot-size agreeing with theoretical values of λ‧f/d. Furthermore, we have designed large area lenses with aperture d = 10 mm, where the number of pillars per lens exceeds 550 million. By using an efficient Python script, we are able to produce these 100 mm2 samples with just 14 hours of EBL writing time

    Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure

    Get PDF
    Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)

    Review of research to inform California's climate scoping plan: Agriculture and working lands

    Full text link
    Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy

    Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy.

    Get PDF
    BACKGROUND: The anatomy of carotid stenosis may influence the outcome of endovascular treatment or carotid endarterectomy. Whether anatomy favors one treatment over the other in terms of safety or efficacy has not been investigated in randomized trials. METHODS: In 414 patients with mostly symptomatic carotid stenosis randomized to endovascular treatment (angioplasty or stenting; n = 213) or carotid endarterectomy (n = 211) in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), the degree and length of stenosis and plaque surface irregularity were assessed on baseline intraarterial angiography. Outcome measures were stroke or death occurring between randomization and 30 days after treatment, and ipsilateral stroke and restenosis ≥50% during follow-up. RESULTS: Carotid stenosis longer than 0.65 times the common carotid artery diameter was associated with increased risk of peri-procedural stroke or death after both endovascular treatment [odds ratio 2.79 (1.17-6.65), P = 0.02] and carotid endarterectomy [2.43 (1.03-5.73), P = 0.04], and with increased long-term risk of restenosis in endovascular treatment [hazard ratio 1.68 (1.12-2.53), P = 0.01]. The excess in restenosis after endovascular treatment compared with carotid endarterectomy was significantly greater in patients with long stenosis than with short stenosis at baseline (interaction P = 0.003). Results remained significant after multivariate adjustment. No associations were found for degree of stenosis and plaque surface. CONCLUSIONS: Increasing stenosis length is an independent risk factor for peri-procedural stroke or death in endovascular treatment and carotid endarterectomy, without favoring one treatment over the other. However, the excess restenosis rate after endovascular treatment compared with carotid endarterectomy increases with longer stenosis at baseline. Stenosis length merits further investigation in carotid revascularisation trials

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Power and the durability of poverty: a critical exploration of the links between culture, marginality and chronic poverty

    Get PDF
    corecore