1,217 research outputs found

    Heuristic environment as condition of art criticism competence development for future teachers

    Get PDF
    Essential factor of professionally significant competences development of future art direction teachers is the educational environment as which it is necessary to understand the integrity of pedagogical conditions, interactions, processes, components of pedagogical process which is specially organized for achievement of the educational purposes. Results of a theoretical research which purpose was studying characteristics of the heuristic environment as conditions of development of competences of future art direction teachers are presented in article. The main intrinsic characteristic of the heuristic educational environment is the following: recognition of value of creative activity of subjects of educational process; implementation of stimulation, support and encouragement of creative activity of students; granting opportunities for inclusion in creative activity. The empirical research was directed to studying influence of specially organized heuristic educational environment on development of art criticism competence of future art direction teachers. Testing, observation, method of expert evaluations of results of creative activity were used by us for realization of a pedagogical experiment. The conducted research allowed to reveal that specially organized heuristic environment promotes high-quality development of art criticism competence which is shown in the following: future art direction teachers acquire culturological and art criticism contents at the levels above an average and high; barriers to transition to creative activity in the field of art criticism are broken; personalization of development of art criticism competence is carried out. Keywords: educational environment, heuristics, heuristic environment, art criticism competenc

    Antibacterial effect of nisin in vitro

    Get PDF
    Results of experimental studies of antimicrobial action of gel compositions containing active substance nisin are presented in the article. It is shown that increasing concentration of nisin at constant concentrations of the other components in the mixture inhibits growth of Staphylococcus aureus and Pseudomonas aeruginosa. The optimal concentration of nisin at which the process of pathogens growth inhibition is the most effective was determined in the experiment

    Investigation of physico-chemical characteristics of carboxymethylcellulose colloidal carriers for medical preparations

    Get PDF
    Introduction. Physico-chemical peculiarities of processes of preparation and aging of colloidal carriers (gels) based on carboxymethylcellulose (CMC) for medical preparations which are planned to be used as a treatment for burn wounds are considered in the article. Studies were conducted in the Central Scientific Research Laboratory of theKharkivNationalMedicalUniversity in 2019.The objectives of the study. The objective was to study the applicability of CMC solutions and their modified analogues for the gel-based pharmaceutical preparations.Material and methods. Experimental studies were carried out under laboratory conditions using equipment for viscosity and pH measuring.Results. The influence of concentration, temperature, and acidity on viscosity of gels was investigated. The gels were tested on aging during storage. The stability of these solutions and syneresis process were investigated. The influence of added modifiers – glycerol and ascorbic acid on the consistency, acidity, susceptibility to contamination and term of storage of the gels was determined.Conclusions. It is shown that unmodified solutions have the highest viscosity and the greatest stability. Increasing of temperature reduces duration of dissolution of CMC and viscosity of the gels. Modification by ascorbic acid significantly reduces viscosity and pH of gels, while addition of glycerol does not affect the stability but increases susceptibility of these solutions to contamination. Storage of obtained solutions for three months under normal conditions at room temperature leads to syneresis and total loss of initial consistency. The gels modified by ascorbic acid are shown to be the least stable. Graphic dependences of these processes are obtained and functions are calculated on the basis of experimental research with the use of mathematical modeling methods. The obtained models will allow to predict physical and chemical properties of gels in order to define the necessary parameters of preparation at the stage of development

    The Influence of Meteorological Parameters and Other Factors on Soil Radon Dynamics

    Get PDF
    The paper presents the results of the research in the degree of the effect of space weather meteorological parameters and factors on the dynamics of soil radon levels and [alpha]- and [beta]-radiation flux densities in a seismically passive region. The cross-correlation analysis showed a significant correlation of [beta]-radiation flux density with temperature in summer, and no correlation in winter. A significant relation between [alpha]- and [beta]-radiation flux densities and pressure within the intra-annual range was not observed. The investigation of the high-intensity precipitation effect on radon volumetric activity and [alpha]- and [beta]-radiation flux densities showed their abnormal increase. The dependence of the anomaly duration on the depth was revealed. The abnormal jumps in [alpha]- and [beta]-radiation flux densities data series occur in the snow-melting periods as well. Low-intensity precipitations significantly violate the standard "diurnal variations" of [alpha]- and [beta]-radiation soil fluxes and radon volumetric activity. Fourier analysis showed the diurnal (24 hours) and semidiurnal (12 hours) harmonics for the observed radiation values at a depth of 0.5 m. The obtained results can be used for interpretation of the data on the soil radon monitoring in order to predict earthquakes, etc

    Ferroelectric Nanotubes

    Full text link
    We report the independent invention of ferroelectric nanotubes from groups in several countries. Devices have been made with three different materials: lead zirconate-titanate PbZr1-xTixO3 (PZT); barium titanate BaTiO3; and strontium bismuth tantalate SrBi2Ta2O9 (SBT). Several different deposition techniques have been used successfully, including misted CSD (chemical solution deposition) and pore wetting. Ferroelectric hysteresis and high optical nonlinearity have been demonstrated. The structures are analyzed via SEM, TEM, XRD, AFM (piezo-mode), and SHG. Applications to trenching in Si dynamic random access memories, ink-jet printers, and photonic devices are discussed. Ferroelectric filled pores as small as 20 nm in diameter have been studied

    Steel septum magnets for the LHC beam injection and extraction

    Get PDF
    The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and built in a collaboration between IHEP (Protvino) and CERN (Geneva). This paper presents the magnet design, the experience gathered during the preseries construction, and gives the results of detailed magnetic measurements of the MSIB and MSDC preseries magnets

    BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway

    Get PDF
    Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during embryonic bone development, bone mass surprisingly was increased with upregulation of canonical Wnt signaling. Although levels of bone formation markers were modestly reduced, levels of resorption markers representing osteoclastogenesis were severely reduced, resulting in a net increase in bone mass. The reduction of osteoclastogenesis was primarily caused by Bmpr1a-deficiency in osteoblasts, at least through the RANKL-OPG pathway. Sclerostin (Sost) expression was downregulated by about 90% and SOST protein was undetectable in osteoblasts and osteocytes, whereas the Wnt signaling was upregulated. Treatment of Bmpr1a-deficient calvariae with sclerostin repressed the Wnt signaling and restored normal bone morphology. By gain of Smad-dependent BMPR1A signaling in mice, Sost expression was upregulated and osteoclastogenesis was increased. Finally, the Bmpr1a-deficient bone phenotype was rescued by enhancing BMPR1A signaling, with restoration of osteoclastogenesis. These findings demonstrate that BMPR1A signaling in osteoblasts restrain endogenous bone mass directly by upregulating osteoclastogenesis through the RANKL-OPG pathway, or indirectly by downregulating canonical Wnt signaling through sclerostin, a Wnt inhibitor and a bone mass mediator

    Parathyroid hormone induces bone cell motility and loss of mature osteocyte phenotype through L-calcium channel dependent and independent mechanisms

    Get PDF
    Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.Matthew Prideaux, Sarah L. Dallas, Ning Zhao, Erica D. Johnsrud, Patricia A. Veno, Dayong Guo, Yuji Mishina, Stephen E. Harris, Lynda F. Bonewal

    Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    Full text link
    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons
    corecore