16 research outputs found

    A SURVEY ON THE AUTOMORPHISM GROUPS OF THE COMMUTING GRAPHS AND POWER GRAPHS

    Get PDF
    Let G be a nite group. The power graph P(G) of a group G is the graphwhose vertex set is the group elements and two elements are adjacent if one is a power of the other. The commuting graph \Delta(G) of a group G, is the graph whose vertices are the group elements, two of them joined if they commute. When the vertex set is G-Z(G), this graph is denoted by \Gamma(G). Since the results based on the automorphism group of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism group of power graphs and commuting graphs obtained in the literature

    Curve boxplot: Generalization of boxplot for ensembles of curves

    Get PDF
    pre-printIn simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics

    Multi-dimensional filtering: Reducing the dimension through rotation

    Get PDF
    Over the past few decades there has been a strong effort towards the development of Smoothness-Increasing Accuracy-Conserving (SIAC) filters for Discontinuous Galerkin (DG) methods, designed to increase the smoothness and improve the convergence rate of the DG solution through this post-processor. These advantages can be exploited during flow visualization, for example by applying the SIAC filter to the DG data before streamline computations [Steffan et al., IEEE-TVCG 14(3): 680-692]. However, introducing these filters in engineering applications can be challenging since a tensor product filter grows in support size as the field dimension increases, becoming computationally expensive. As an alternative, [Walfisch et al., JOMP 38(2);164-184] proposed a univariate filter implemented along the streamline curves. Until now, this technique remained a numerical experiment. In this paper we introduce the line SIAC filter and explore how the orientation, structure and filter size affect the order of accuracy and global errors. We present theoretical error estimates showing how line filtering preserves the properties of traditional tensor product filtering, including smoothness and improvement in the convergence rate. Furthermore, numerical experiments are included, exhibiting how these filters achieve the same accuracy at significantly lower computational costs, becoming an attractive tool for the scientific visualization community

    Hexagonal Smoothness-Increasing Accuracy-Conserving Filtering

    Get PDF
    Discontinuous Galerkin (DG) methods are a popular class of numerical techniques to solve partial differential equations due to their higher order of accuracy. However, the inter-element discontinuity of a DG solution hinders its utility in various applications, including visualization and feature extraction. This shortcoming can be alleviated by postprocessing of DG solutions to increase the inter-element smoothness. A class of postprocessing techniques proposed to increase the inter-element smoothness is SIAC filtering. In addition to increasing the inter-element continuity, SIAC filtering also raises the convergence rate from order k+1k+1 to order 2k+12k+1 . Since the introduction of SIAC filtering for univariate hyperbolic equations by Cockburn et al. (Math Comput 72(242):577–606, 2003), many generalizations of SIAC filtering have been proposed. Recently, the idea of dimensionality reduction through rotation has been the focus of studies in which a univariate SIAC kernel has been used to postprocess a two-dimensional DG solution (Docampo-Sánchez et al. in Multi-dimensional filtering: reducing the dimension through rotation, 2016. arXiv preprint arXiv:1610.02317). However, the scope of theoretical development of multidimensional SIAC filters has never gone beyond the usage of tensor product multidimensional B-splines or the reduction of the filter dimension. In this paper, we define a new SIAC filter called hexagonal SIAC (HSIAC) that uses a nonseparable class of two-dimensional spline functions called hex splines. In addition to relaxing the separability assumption, the proposed HSIAC filter provides more symmetry to its tensor-product counterpart. We prove that the superconvergence property holds for a specific class of structured triangular meshes using HSIAC filtering and provide numerical results to demonstrate and validate our theoretical results

    Smoothness-Increasing Accuracy-Conserving (SIAC) filtering and quasi interpolation: A unified view

    Get PDF
    Filtering plays a crucial role in postprocessing and analyzing data in scientific and engineering applications. Various application-specific filtering schemes have been proposed based on particular design criteria. In this paper, we focus on establishing the theoretical connection between quasi-interpolation and a class of kernels (based on B-splines) that are specifically designed for the postprocessing of the discontinuous Galerkin (DG) method called Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. SIAC filtering, as the name suggests, aims to increase the smoothness of the DG approximation while conserving the inherent accuracy of the DG solution (superconvergence). Superconvergence properties of SIAC filtering has been studied in the literature. In this paper, we present the theoretical results that establish the connection between SIAC filtering to long-standing concepts in approximation theory such as quasi-interpolation and polynomial reproduction. This connection bridges the gap between the two related disciplines and provides a decisive advancement in designing new filters and mathematical analysis of their properties. In particular, we derive a closed formulation for convolution of SIAC kernels with polynomials. We also compare and contrast cardinal spline functions as an example of filters designed for image processing applications with SIAC filters of the same order, and study their properties

    Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering and Its Application

    No full text
    Since the introduction of Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for DG approximation of univariate hyperbolic equations by Cockburn et al., many generalizations of SIAC filtering have been proposed. Recently, new advancements in connecting the spline theory and SIAC filtering have paved the way for a more geometric view of this filtering technique. Based on which, various generalizations of the SIAC kernel have been proposed to make the filtering viable for more realistic applications. Examples include the introduction of SIAC line integral with applications for streamlining and flow visualization, hexagonal SIAC using nonseparable splines, and position dependent SIAC with nonuniform knot sequences. In this talk, I will introduce the basic concept of the SIAC filtering, its connection with well-established concepts from approximation theory, and discuss the recent advances in SIAC filtering.Non UBCUnreviewedAuthor affiliation: University of MiamiFacult

    PI, Szeged and edge Szeged indices of an infinite family of nanostar dendrimers

    No full text
    538-541A topological index of a graph G is a numeric quantity related to G which describes the molecular graph G. A dendrimer is an artificially manufactured or synthesized molecule built up from branched units called monomers. The PI and Szeged indices of a class of nanostar dendrimer are computed
    corecore