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Abstract Filtering plays a crucial role in postprocessing and analyzing data
in scientific and engineering applications. Various application-specific filtering
schemes have been proposed based on particular design criteria. In this paper,
we focus on establishing the theoretical connection between quasi-interpolation
and a class of kernels (based on B-splines) that are specifically designed for the
postprocessing of the discontinuous Galerkin (DG) method called Smoothness-
Increasing Accuracy-Conserving (SIAC) filtering. SIAC filtering, as the name
suggests, aims to increase the smoothness of the DG approximation while
conserving the inherent accuracy of the DG solution (superconvergence). Su-
perconvergence properties of SIAC filtering has been studied in the literature.
In this paper, we present the theoretical results that establish the connection
between SIAC filtering to long-standing concepts in approximation theory such
as quasi-interpolation and polynomial reproduction. This connection bridges
the gap between the two related disciplines and provides a decisive advance-
ment in designing new filters and mathematical analysis of their properties.
In particular, we derive a closed formulation for convolution of SIAC kernels
with polynomials. We also compare and contrast cardinal spline functions as
an example of filters designed for image processing applications with SIAC
filters of the same order, and study their properties.
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1 Introduction

The SIAC kernel has mostly been developed for discontinuous Galerkin (DG)
methods. DG is a widely-used high-order numerical technique to solve (par-
tial) differential equations over complex computational domains using high
approximation order [6]. DG methods provide piecewise-continuous approxi-
mations to the solution of a (partial) differential equation over a domain (i.e.,
a collection of elements) and control the fluxes between elements using a weak
constraint without enforcing a continuity requirement. The DG solution over
each element is represented in terms of (piecewise) polynomials up to degree
k where k + 1 is the order of accuracy of the DG approximation while the
weak continuity between elements is controlled through the flux constraints.
However, the inter-element discontinuities can be problematic. For instance,
the inter-element discontinuity can pose challenges for applications such as
feature extraction and visualization. A postprocessing stage to improve the
inter-element continuity of the DG solution is therefore desirable. However,
special care must be taken not to deteriorate the order of the accuracy of
the original DG solution inside the elements. The class of SIAC postprocess-
ing techniques proposed in [7] can be used to raise the continuity degree of
the DG approximation while preserving and extracting the superconvergence
of the original DG approximation. It uses compactly-supported convolution
kernels based on a linear combination of B-splines. While the smoothness in-
creasing property of SIAC filtering is a direct result of using B-spline filtering,
the accuracy preserving property (i.e., superconvergence) of the SIAC filtering
is attained through choosing a specific number of B-splines and imposing a
polynomial reproduction constraint.

The approximation properties of Smoothness-Increasing Accuracy-Conserving
(SIAC) kernel as a filtering technique to generate smooth approximations have
received attention in simulation science [7,13,24,26,12]. A SIAC filter has the
ability to extract a superconvergent solution from a DG approximation for dif-
ferent element types including quadrilateral, structured triangular, tetrahedral
and even unstructured triangular meshes [17,21,18]. One-sided SIAC kernels
have been proposed as an extension of this convolution-based postprocessing
for simulations involving boundaries or sharp discontinuities such as shocks [24,
35,26]. However, the approximation properties of SIAC filtering in relation to
spline approximation as widely studied in the approximation theory literature
have not received much attention. In this paper, we study these classes of ker-
nels in a more general setting from both the approximation theory perspective
where spline spaces are heavily studied as well as from an application point of
view where kernels are used for generating smooth approximations with some
desirable properties. Designing B-spline-based filtering schemes is not a new
topic. However, for the first time, we establish the theoretical connection be-
tween construction of the SIAC kernel and quasi interpolation. We provide a
unified view that enhances the mathematical analysis tools for designing and
analyzing general kernels using central B-splines with desirable approximation
properties. One of the direct impacts of such analysis is deriving a closed for-
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mulation of the convolution of SIAC kernels (and more generic B-spline-based
kernels) with polynomials that leads to a direct and exact computation of the
kernel coefficients that was not known previously. Moreover, we introduce a
systematic way of constructing variations of the symmetric SIAC kernel that
still attain superconvergence properties while having different computational
costs and smoothness properties by changing the number and/or the order
of B-splines used. In light of this generalization, we also extend the theoret-
ical superconvergence results concerning the error analysis for SIAC kernels
in relation to the number and the order of B-splines used to construct such
variations. In addition, we demonstrate that the symmetric SIAC kernel in
this context can be considered as a member of a family of filtering kernels.
Thorough study of the entire family of filtering kernels of which the symmet-
ric SIAC kernels are specific members is beyond the scope of the current work
and hence, we leave it as an interesting future work direction. From the appli-
cation point of view, our results can help practitioners design new kernels of
interest with different design criteria. For the purpose of the current work, we
only focus on postprocessing of the DG approximation to a linear hyperbolic
equation on a uniform quadrilateral mesh using the symmetric SIAC kernel
and the one-sided SIAC kernel introduced in [24,35] whose superconvergence
properties have been proven in [7,13,12].

The rest of the paper proceeds as follows. After an introduction to the
notation used, we provide a brief review of the spline approximation in Sec-
tion 2.2. The reader conversant with variations of spline approximation such
as polynomial spline interpolation and quasi interpolation can move directly
to Section 3. In Section 3 we introduce a generic class of compactly-supported
filters based on a finite linear combination of B-splines. Using theoretical re-
sults concerning B-spline convolution over polynomial spaces, we demonstrate
how filtering kernels can be designed with polynomial reproduction properties
from this generic class. Section 4 is devoted to the introduction of SIAC kernels
and revisiting its approximation properties in light of analysis techniques dis-
cussed in Section 3. In Section 5, we provide some numerical results and error
contour plots to demonstrate and validate the theoretical results presented.
Finally, we present our conclusions in Section 6.

2 Background

2.1 Notation

We start by introducing the notation used in the remainder of the paper.
As the aim of this paper is to study convolution kernels, it is necessary to
introduce different convolution operators of interest - continuous convolution,
discrete convolution and semi-discrete convolution.
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Definition 1 (Continuous convolution) The continuous convolution of
two continuous functions, f and g is defined as

(f ∗ g)(x) :=

∫
Ω

f(τ)g(x− τ)dτ, (1)

where Ω represents the domain over which the convolution is computed.

Equivalently, one can write the continuous convolution operator in terms of
an inner product as

(f ∗ g)(x) := 〈f(τ), g(x− τ)〉. (2)

Definition 2 (Discrete convolution) The discrete convolution of two func-
tions, f [k] and g[k] defined over a (sub)set of Z is defined as

(f ∗′ g)[k] :=
∑
m∈Z

f [m]g[k −m]. (3)

Definition 3 (Semi-discrete convolution) Considering ϕ to denote a com-
pactly supported continuous function and f to denote a function (at least)
defined on Z, then the 1D semi-discrete convolution can be defined as

(ϕ ∗| f)(·) :=
∑
m∈Z

f(m)ϕ(· −m). (4)

It is worth noting that in comparison to continuous convolution that com-
mutes with translation, semi-discrete convolution only commutes with integer
translations. Approximation of polynomials using B-splines plays a major role
in derivation of our theoretical results. We use Pn to denote the polynomial
space containing polynomials up to degree n and use normalized monomials
as a convenient basis for such polynomial spaces.

Definition 4 (Nomalized monomial) The normalized monomial of degree
p is defined as

[[x]]
p

:=
xp

p!
. (5)

We wish to emphasize that in the DG literature the bracket notation is gener-
ally reserved for indicating an inter-element jump [5]. Here, unless otherwise
noted, we use the bracket notation to indicate a normalized monomial.

Where appropriate, we use ∂α to denote the central difference operator of
order α. To aid the discussion of B-spline convolution in Section 3, we use
f̂(·) to denote the Fourier transform of an integrable function f(·) defined as:

f̂(ω) =
∫∞
−∞ f(x)e−ixωdx. We will use δ(·) to denote the Dirac delta func-

tion(al) and use δ(p)(·) to denote its pth order functional derivative.
The superconvergence properties of the SIAC kernel is studied in terms of

the norm of the postprocessing error. We use ‖ · ‖0,Ω to represent the usual
L2-norm over Ω and ‖ · ‖−`,Ω to denote the negative-order norm, where Ω
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represents a bounded open set Ω ∈ Rd. The negative-order norm is defined as
in [4] in terms of positive norms as

‖u‖−`,Ω = sup
φ∈C∞0 (Ω)

∫
Ω
u(x)φ(x)dx

‖φ‖`,Ω
, (6)

where C∞0 (Ω) denotes the space of infinitely differentiable functions with com-
pact support on Ω1. The negative order norm as Cockburn noted [7] can be
used to quantify the oscillatory nature of a function. Negative order norm
is often used to prove superconvergence property of SIAC filtering via the
following relation it has with L2 norm [4, Lemma 4.2]

‖u‖0,Ω ≤ C
∑
|α|≤`

‖Dαu‖−`,Ω , (7)

where Dα is used to denote the differentiation operator of degree α. Since the
focus of this paper is on linear hyperbolic equations, we use u(·) to denote
the true solution to a linear hyperbolic equation and uh(·) to denote its DG
approximation of order k + 1.

2.2 Review of B-splines and Spline Approximation

The maximal approximation order of B-splines along with their minimal sup-
port made B-spline-based approximation techniques popular in a variety of
applications, including signal processing, biomedical imaging, finite element
methods and superconvergence-extraction techniques [33,34,31,30,7,11,4,29,
24,20]. In this section, we introduce B-splines in the univariate case, with all
the results easily extending to higher-dimensional Cartesian lattices (or uni-
form quadrilateral meshes) using tensor products.

2.2.1 Introduction to Central B-splines and Spline Spaces

The first-order univariate central B-spline (Basis splines) is defined as the
indicator function over the interval, T = [−1

2 ,
1
2 ]:2

b1(x) = XT (x) =

{
1 x ∈ [−1

2 ,
1
2 ]

0 otherwise.
. (8)

Higher-order central B-splines can be constructed by simply using self-convolution,

bn+1(x) = (b1 ∗ bn)(x),

1 The negative order norm ‖ · ‖−`,Ω is the norm associated with H−`(Ω) (i.e., the dual

space of the Sobolev space H`(Ω)).
2 The first-order central B-spline is often denoted as b0(x), but herein the authors chose to

follow the notation used in the previously published definition of SIAC kernels throughout
the article.
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b2 = b1 ∗ b1
b3 = b1 ∗ b2

Fig. 1 Self-convolution of B-splines.

as shown in Figure 1. For the rest of
the discussion we simply use the term B-
splines to denote central B-splines unless
otherwise stated. B-splines define a basis
for an approximation space called a spline
space. A typical spline space is defined as
the spanning space of translations of the
basis function (i.e., B-splines), denoted as:

Sn := span(bn(· − k))k∈Z. (9)

An arbitrary function can be approximated with an element from the spline
space, s ∈ Sn by finding the unique set of spline coefficients, cγ , that best
represent that function:

s =
∑
γ∈hZ

cγbn(· − γ), (10)

where cγ represents the spline coefficient and h denotes the distance between
the B-spline centers, x− γ. The above relation can be translated into a semi-
discrete convolution with a B-spline as the kernel and the vector representing
the spline coefficients. It has been proven that every piecewise polynomial
function of a given degree and smoothness over a domain can be represented by
a linear combination (i.e., convolution) of the B-spline of the same degree over
the same domain partition [10]. In general, the smoothness and the accuracy of
the spline approximation can be controlled by varying the order of the B-spline
used.

In addition to having compact support, B-splines provide the maximal
approximation order over polynomial spaces. The approximation order of B-
splines is defined as the asymptotic behavior of the approximation error as the
sampling distance h is refined [2]

dist(f − sh) = O(hn), (11)

where sh ∈ Sn denotes the spline approximation of any function f in the
corresponding Sobolev space and the distance in here is measured in the Lp-
norm (2 ≤ p ≤ ∞). Various properties of the spline space formed by shifts
of a d-dimensional B-spline of order n + 1 have been summarized in Table 1.
Note that a spline space in this context is formed by shifts of a single B-spline.
In the next section, we study how kernels can be constructed using a linear
combination of multiple B-splines.

Table 1 Approximation properties of spline space formed by d-dimensional B-spline of
order n+ 1.

Spline Space Degree Approx. Order Continuity
Sn+1 nd n+ 1 Cn−1

The spline space formed by B-splines of order n+ 1 contains polynomials
up to degree n [8,3]. Therefore, the approximation order of the spline space
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can also be studied in terms of its lower-order polynomial space reproduction
property [28]. The choice of spline coefficients plays a major role in attaining
the best spline approximation when approximating an arbitrary function in
the spline space. A proper choice of spline coefficients ensures the exact re-
production of polynomials up to the degree that spline space can afford. An
improper choice of spline coefficients (such as using the discrete function values
as the spline coefficients) can result in degradation of the approximation error
from the best that can be offered by spline approximation (often referred to as
over-smoothing artifact) [9, Proposition 2.10]. Computation of proper spline
coefficients for spline approximation has been studied in the approximation
theory literature through a pre-filtering scheme called quasi-interpolation [3,
Chapter III].

2.3 Introduction to Quasi-Interpolation

Quasi-interpolation provides an elegant formulation to convert discrete func-
tion values of f into spline coefficients in order to provide its best representa-
tion (i.e., approximation) in a spline space. Considering a sufficiently smooth
function f(x) and its representation in terms of a Taylor series expansion,

f(x) = f(0) +Df(0)x+ · · ·+Dnf(0)xn +O(xn+1), (12)

a spline-based quasi-interpolation of f(x) using a B-spline of order (n + 1)
ensures the reproduction of the first n+ 1 terms of its Taylor series expansion
which translate into the best approximation of f(x) in Pn. Finding spline
coefficients using quasi-interpolation is often carried out by designing a linear
functional λ to write the spline approximation of f as [3, III.13]

Qλf(x) =
∑
γ∈Z

λf(·+ γ)︸ ︷︷ ︸
cγ

bn+1(x− γ), (13)

where Qλf(x) represents the quasi-interpolant of f(x) (or spline approxima-
tion of f(x) with quasi-interpolation) and cγ denotes the spline coefficients in
Eq. 10. In cases where f is a low-order polynomial, the spline-based quasi-
interpolation exactly reproduces f , that is Qλf(x) = f(x) for f(x) ∈ Pn.
Polynomial reproduction guarantees optimal asymptotic behavior of the ap-
proximation error using B-splines [15,3] and their higher dimensional counter-
parts [23,22]. Construction of such a linear functional for quasi-interpolation
lends itself to the Fourier analysis of B-splines’ (semi-discrete) convolution
with polynomials.

The following lemma summarizes the results concerning the B-spline map-
ping in polynomial spaces that plays the main role in derivation of λ (and
quasi-interpolation).

Lemma 1 Denote the polynomial space consisting of polynomials of degree
less than or equal to n as Pn. The (semi-discrete) convolution of a polynomial
from this space with a B-spline of order n+ 1 provides a one-to-one and onto
mapping, and is therefore invertible.
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Interested readers should consult [3, Proposition 6] for the proof and the
discussion of this result in a general setting. We only provide a summary of
this result to study the mapping of polynomials under (univariate) B-spline
convolution while the results can easily be extended to higher dimensions using
tensor products. The semi-discrete convolution of a normalized monomial of
degree p ≤ n with B-splines of order n+ 1 results in a polynomial of the same
order. However, the resultant polynomial is often not equal to [[x]]

p
unless

n = 0, 1. For instance, the following summarizes the results of the convolution
of quadratic B-spline with normalized monomials (up to degree 2)

b3(x) ∗| [[x]]
0

= 1,

b3(x) ∗| [[x]]
1

= x,

b3(x) ∗| [[x]]
2

= [[x]]
2

+
1

8
.

(14)

While, this example demonstrates that convolution of B-spline of order n+ 1
with [[x]]

p
where p ≤ n does not result in the reproduction of the original

function, from Lemma 1, it is easy to conclude that for p ≤ n there exists a
polynomial gp(x) such that

bn+1(x) ∗| gp(x) = [[x]]
p
, gp(x) =

∑
γ≤p

βγ [[x]]
p−γ

, p ≤ n. (15)

Therefore, in order to reproduce [[x]]
p

using a B-spline of order n + 1 where
p ≤ n, one needs to use discrete values of gp(x) instead of discrete values of
[[x]]

p
. gp(x) is not an arbitrary polynomial (see Lemma 1) and can be uniquely

specified (for any order) in terms of the coefficients βγ efficiently. The following
lemma fully specifies gp(x) in this context.

Lemma 2 The polynomial coefficients βγ in Eq. (15) are fully specified by the
Fourier transform of the B-spline used in (15) as [3, III.34],

βγ = Dγ iγ

b̂n+1(ω)

∣∣∣∣
ω=0

, (16)

where i denotes the unit imaginary number.

Using Lemma 2, βγ can be computed analytically. The interested reader
can consult [3, Chapter III] for the proof. The polynomial gp(x) along with
Taylor series expansion can then be used to define the linear functional, λ, to
construct the spline coefficients from discrete values of an arbitrary function
as [3, III.13]

λ : f 7→
∑
γ≤n

gγ(0)(Dγf)(0). (17)

The optimal approximation power and smoothness of the spline-approximants
are among the main reasons that make B-spline approximation attractive from
a practical point of view. As shown in Table 1, using higher-order B-splines as
approximation kernels results in a smoother approximation of the underlying
function, while the exact interpolation of the sampling points is only satisfied
when lower-order B-splines like b1 or b2 are used (even with deployment of
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quasi-interpolation). The exact interpolation of discrete function values using
higher-order B-splines (using semi-discrete convolution) has been studied as
a cardinal spline interpolation problem [25,32]. In what follows, we briefly
discuss the cardinal spline interpolation problem. Cardinal spline (filters) are
examples of globally-supported interpolatory kernels constructed based on a
linear combination of B-splines to solve spline interpolation problem.

2.4 Cardinal Spline Interpolation

The cardinal spline interpolation problem can be defined as follows: Consider a

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2 Cardinal cubic spline function.

discrete sequence of function values,
{f(γ)}, that are equally spaced, where
f(x) is a continuous piecewise polyno-
mial function of degree n with continu-
ous derivatives up to order n− 1. Find
an spline interpolant of this function
in the spline space formed by trans-
lates of the (n + 1)th order B-spline.
Without any loss of generality, we as-
sume a unit length distance between
the discrete function values (and the
B-spline translations). This problem is
equivalent to finding the spline coeffi-
cients cγ that satisfy

f(x) ≈ s(x) =
∑
γ∈Z

cγbn+1(x− γ), s(γ) = f(γ). (18)

The existence and uniqueness of such an interpolant in the spline space formed
by translates of (n+1)th order B-splines has been discussed in [25]. The spline
coefficients cγ in this relation are obtained by pre-filtering the discrete function
values, {f(γ)}, using the direct B-spline filter {qnint(γ)} proposed in [32]:

s(x) =
∑
γ∈Z

(f ∗′ qnint)(γ)︸ ︷︷ ︸
cγ

bn+1(x− γ), (19)

where ∗′ denotes discrete convolution introduced in Eq. 3. Equivalently, one
can express the spline interpolant s(x) in terms of the discrete function values
as

s(x) =
∑
γ∈Z

f(γ)ηn+1(x− γ), ηn+1(x) =
∑
γ∈Z

qnint(γ)bn+1(x− γ), (20)

where ηn+1(x) denotes the cardinal spline of order n + 1 (with a global sup-
port). For instance, the cardinal cubic spline can be written as:

η4(x) =
−6α

(1− α2)

∑
γ∈Z

α|γ|b4(x− γ), (21)
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where α =
√

3− 2 [32].
It is important to note that the cubic cardinal spline presented attains a

value of 1 at 0 (i.e., for the interpolation point) and value 0 on all other integer
points (i.e., for the rest of the discrete function values). This property guaran-
tees the exact interpolation of the discrete function values. From a theoretical
point of view, the polynomial spline interpolant is computed as an element
of the spline space and hence the approximation error is still bounded by the
approximation power of the B-spline used. As demonstrated in Figure 2, the
support of the cardinal spline (filter) tends to vanish rapidly. However, based
on Eq. 20 cardinal splines have global supports.

3 The B-spline Based Kernels with Compact Support

In the previous section, we briefly reviewed approximation in spline spaces us-
ing a semi-discrete convolution framework. In this section, we focus on studying
B-spline-based kernels that are often used in practice for filtering and generat-
ing smooth functions using continuous convolution and study the theoretical
connection between the two. An example of applications that widely use B-
spline-based filters is postprocessing of the DG approximation, which will be
covered in detail in Section 4.

Kernels with global support (e.g., cardinal spline) are computationally
unattractive. Therefore, in this section, we consider a general approach to
define kernels with compact support based on the linear combination of r + 1
central B-splines of order n+ 1 as

Kr+1,n+1(x) =

r∑
γ=0

cγbn+1(x− xγ). (22)

For notational convenience, we express the kernel as Kr+1,n+1 throughout
the article. It is hoped that these kernels can balance computational cost
with desirable approximation properties. The design choices that should be
considered to construct such a kernel are the number of B-splines, the order
of the B-splines used, the kernel coefficients, cγ , and the B-spline centers, xγ .

Note that the extent of the support of the kernel is specified based on
the order, the number of B-splines used and the B-spline centers. Assuming
x0 < x1 < · · · < xr the support of the kernel Kr+1,n+1 is: [x0 − n+1

2 , xr +
n+1

2 ] where n + 1 is the support of bn+1. Kernels constructed through this
approach have Cn−1 continuity. A common design criterion for choosing the
kernel coefficients is to impose constraints on the coefficients regarding the
behavior of the approximation error. For instance, one can choose to control
the behavior of the kernel in a specific approximation space (e.g., spline spaces
or polynomial spaces) or to impose exact interpolation of the sampling points
to construct a unique kernel.

Since Kr+1,n+1 is constructed using central B-splines, it is natural to study
its properties in the polynomial spaces. As discussed in detail in Section 2.3,
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spline approximation can be better understood as the mapping B-spline (con-
volution) provides in low-order polynomial spaces in terms of gp(x) defined in
Eq. 15. Consequently, low-order polynomial reproduction is a natural choice
for controlling the approximation behavior of Kr+1,n+1. In order to fully ben-
efit from the approximation power of the B-spline used to construct Kr+1,n+1,
the kernel needs to reproduce polynomials up to degree n (i.e., up to the ap-
proximation power of the B-spline) . However, special care must be taken to
enforce this constraint based on the relation between the number of coefficients
(i.e., the degrees of freedom), r+1 and the B-spline order, n+1. For r+1 ≥ n,
the following relation ensures that Kr+1,n+1 reproduces the polynomials up
to degree n,

Kr+1,n+1(x) ∗ [[x]]
p

= [[x]]
p
, 0 ≤ p ≤ n, (23)

where ∗ in this equation denotes a continuous convolution defined in Eq. 1.
Designing kernels with a polynomial reproduction property is not a new topic,
and the kernel coefficient can be numerically computed by solving the linear
system of equations induced by Eq. 23. However, we aim to demonstrate that
well-established results in approximation theory provide theoretical means to
write the left hand side of Eq. 23 in closed form, which in turn results in finding
the kernel coefficients exactly. The following lemma demonstrates some results
regarding (n+ 1)th order B-spline mapping over polynomial spaces.

Lemma 3 Convolution of the (n + 1)th order B-spline for n ≥ 1 with nor-
malized monomials of degree higher than or equal to n results in a polynomial
of the same order of the form:

[[x]]
p ∗ bn+1(x) = Gp(x) =

p∑
k=0

ak [[x]]
k
, ak =

ip−k

(p− k)!
·
(
Dp−k b̂n+1(ω)

)∣∣∣∣
ω=0

,

(24)
where i =

√
−1.

Remark: It is known that B-spline (semi-discrete) convolution over lower
order polynomial spaces as discussed in Lemma 1 provides a one-to-one and
onto mapping. Note that the B-spline mapping for polynomial spaces whose
degree is higher than the B-spline order is only into (yet invertible). Moreover,
B-spline mapping using continuous convolution and semi-discrete convolution
agrees on polynomial spaces [3, Chapter III].

Proof Convolution in the spatial domain corresponds to multiplication in the
frequency domain; hence, we can write the convolution of a generic normalized
monomial of order p with B-spline of order n+ 1 in the Fourier domain as:

[[x]]
p ∗ bn+1(x)⇔ ipδ(p)(ω)

p!
· b̂n+1(ω), (25)
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Using the distributional definition of the delta function, δ(ω), we can write
the right-hand-side of the above relation as:

ipδ(p)(ω)

p!
·b̂n+1(ω) =

ip

p!

(
b̂n+1·φ

)(p)
(ω)

∣∣∣∣
ω=0

=

p∑
k=0

(( ikφ(k)

k!
·
ip−k b̂

(p−k)
n+1

(p− k)!

)
(ω)

∣∣∣∣
ω=0

)
,

(26)

where φ(ω) in this relation represents a test function. Note that b̂(n+1) can be
calculated analytically and evaluated at ω = 0. Therefore, the equation above
can be rewritten as a linear combination of derivatives of the delta function
whose coefficients only depends on the evaluation values of the derivatives of
Fourier transform of bn+1(x) at 0:

ip

p!

(
b̂n+1 · φ

)(p)
(ω)

∣∣∣∣
ω=0

=

p∑
k=0

〈
ak,

ikφ(k)(ω)

k!

∣∣∣∣
ω=0

〉
,

ak =
ip−k

(p− k)!
·
(
Dp−k b̂n+1(ω)

)∣∣∣∣
ω=0

.

(27)

The right-hand-side in the inner product corresponds to the Fourier trans-
form of a kth order normalized monomial in the time domain (φ(ω) in this
relation represents a test function). Note that the Fourier transform of a B-
spline is an even function and therefore, for odd values of p − k we have:

b̂
(p−k)
n+1 (0) = 0. The Fourier analysis above shows that the result of the convo-

lution of a higher-order monomial with B-spline can be interpreted as another
polynomial of the form:

[[x]]
p ∗ bn+1(x) =

p∑
k=0

ak [[x]]
k
. (28)

2

The following Theorem shows how one can use the B-spline mapping in
the polynomial space, using Lemma 3 to enforce polynomial reproduction up
to the approximation power of bn+1(x):

Theorem 1 Let r+1 ≥ n, then the following relations guarantee that Kr+1,n+1

satisfies the lower-order polynomial reproduction property for Pn as defined in
Eq. (23):

(1)

r∑
γ=0

cγ = 1 (partition of unity)

(2)

r∑
γ=0

cγ

p∑
m=0

[[−xγ ]]
m
p−m∑
k=0

ap−k−m [[x]]
k

= [[x]]
p
, p = 0, · · · , n,

(29)

where ak is only dependent on the Fourier transform of the constituent B-spline
(see Lemma 2).
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Remark: The left-hand side of (2) in Eq. 29 denotes a linear combination
of lower order monomials up to degree p. Therefore, ak can be used to specify
the relation between the kernel coefficients analytically and define the kernel
coefficients exactly in terms of rational numbers.

Proof We start with rewriting (23) as

r∑
γ=0

cγ〈bn+1(x− y − xγ), yp〉 = xp, p = 0, · · · , n, (30)

We can replace the monomials in the relation above with normalized mono-
mials: [[x]]

p
:= xp

p! and use the change of variable z = x − y − xγ to write

r∑
γ=0

cγ〈bn+1(z), [[x− z − xγ ]]
p〉 = [[x]]

p
, p = 0, · · · , n. (31)

Using the binomial expansion we have

[[x− z − xγ ]]
p

=
(x− z − xγ)p

p!
=

p∑
k=0

[[x− z]]p−k [[−xγ ]]
k
. (32)

Consequently, Eq. (30) simplifies to

r∑
γ=0

cγ

p∑
m=0

[[−xγ ]]
m 〈bn+1(z), [[x− z]]p−m〉 = [[x]]

p
, p = 0, 1, · · · , n. (33)

For p ≤ n, B-splines of order n+ 1 can reproduce polynomials up to degree n
and hence, we can write Eq. (33) in terms of Gp(x) (see Lemma 3) as:

r∑
γ=0

cγ

p∑
m=0

[[−xγ ]]
m
Gp−m(x) = [[x]]

p
, p = 0, · · · , n. (34)

For p = 0, we have G0(x) = 1 and hence, we can conclude that the kernel
coefficients satisfy:

r∑
γ=0

cγ = 1. (35)

This relation further shows that any order of Kr+1,n+1 introduced in Eq. (23)
satisfies a partition of unity property and completes the proof for (1). By
plugging in the relation for Gp(x) we have:

r∑
γ=0

cγ

p∑
m=0

[[−xγ ]]
m
p−m∑
k=0

ap−k−m [[x]]
k

= [[x]]
p
, p = 0, · · · , n. (36)

Note that the values of ak only depend on the B-spline order and not p.
Therefore, it suffices to consider p = n. 2
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Depending on the values chosen for n and r, Theorem 1 may not fully specify
the kernel coefficients cγ . However, Eq. (36) will uniquely specify a family of
kernels that are Cn−1 continuous and filtering using Kr+1,n+1 reproduces any
function f(x) ∈ Pn. Moreover, all the kernels in this family satisfy the partition
of unity property. In this situation, additional constraints on the behavior of
the kernel are required in order to select a unique kernel from this family.
We first focus on symmetric kernels and later demonstrate how the results
generalize to a specific class of one-sided kernels as well [24,35].

In simulation science, polynomial reproduction is a desirable property, and
correspondingly is the property on which postprocessing kernels such as the
symmetric SIAC kernels have been constructed [4,7]. Considering r + 1 ≥ n,
let us consider polynomial reproduction up to the number of B-splines (i.e.,
the number of kernel coefficients) as

Kr+1,n+1(x) ∗ [[x]]
p

= [[x]]
p
, p = 0, · · · , r. (37)

This equation uniquely specifies all r + 1 kernel coefficients in Eq. (22).

Theorem 1 and Lemma 3 can be used to study the polynomial reproduc-
tion property of Kr+1,n+1 in order to uniquely specify the unknown kernel
coefficients.

Without loss of generality, for the rest of the discussion in this section
we consider r to represent an even number and xγ = − r2 + γ which means
Kr+1,n+1 represents a symmetric kernel where cm = cr−m and hence, the
degrees of freedom (i.e., the number of unknown kernel coefficients) reduces
to r

2 + 1. In Section 4, we prove how the results can be extended for a class of
filtering kernels with different choice for xγ and r.

Theorem 2 Let r
2 + 1 ≥ dn2 e and xγ = − r2 + γ. The kernel coefficients

of the symmetric kernel Kr+1,n+1 with polynomial reproduction property as
introduced in Eq. (37) can then be fully specified using the following relations:

(1)

r∑
γ=0

cγ = 1 (partition of unity)

(2) bn+1(x) ∗ [[x]]
r

+ 2

r/2−1∑
γ=0

cγ

br/2c∑
m=1

[[xγ ]]
2m

(
bn+1(x) ∗ [[x]]

r−2m

)
= [[x]]

r
.

(38)

Proof Following the proof provided for Theorem 1, we can rewrite the poly-
nomial reproduction property of the kernel presented in Eq. (37) in terms of
B-spline convolutions as

r∑
γ=0

cγ

p∑
m=0

[[−xγ ]]
m

(
bn+1(x) ∗ [[x]]

p−m
)

= [[x]]
p
, p = n, · · · , r (39)
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implying

r∑
γ=0

cγ

(
bn+1(x) ∗ [[x]]

p

)
+

r∑
γ=0

cγ

p∑
m=1

[[−xγ ]]
m

(
bn+1(x) ∗ [[x]]

p−m
)

= [[x]]
p
.

(40)

Taking p = 0, (1) is trivial. Note that equivalently one can use Theorem 1 to
prove (1). Due to the symmetry of the kernel, the kernel coefficients cγ and
the B-spline centers, xγ are symmetric around r

2 , therefore, we can further
simplify the relation

r∑
γ=0

cγ

(
bn+1(x) ∗ [[x]]

p

)
+

r/2−1∑
γ=0

cγ

p∑
m=1

(−1)m [[xγ ]]
m

(
bn+1(x) ∗ [[x]]

p−m
)

+

r∑
γ=r/2+1

cγ

p∑
m=1

(−1)m [[xγ ]]
m

(
bn+1(x) ∗ [[x]]

p−m
)

+ cr/2

p∑
m=1

(−1)m [[0]]
m

(
bn+1(x) ∗ [[x]]

p−m
)

= [[x]]
p
, p = 0, · · · , r.

(41)

Using (1) and symmetry, we can rewrite the relation above for p = n, · · · , r as

bn+1(x) ∗ [[x]]
p

+ 2

r/2−1∑
γ=0

cγ

bp/2c∑
m=1

[[xγ ]]
2m

(
bn+1(x) ∗ [[x]]

p−2m

)
= [[x]]

p
. (42)

The B-spline convolutions in the relation above can be further simplified using
ak (see Theorem 1 and Lemma 3). Similar to the proof provided for Theorem 1,
it suffices to consider p = r. The Fourier transform of B-spline is an even
function and hence, ak = 0 for k = 2m + 1. Therefore, the relation above
results in exactly r

2 + 1 equations (in terms of ak) which will uniquely specify
the r

2 + 1 kernel coefficients. 2

For the rest of the discussion in this section, we will focus on specific symmetric
kernels that reproduce polynomials up to degree r:

1. In simulation sciences, K2n+1,n+1 (i.e., r = 2n) has been studied in order
to construct a class of postprocessing kernels which will be discussed in
detail in Section 4.

2. Motivated by (1) and for illustration purposes, we briefly introduce two
new kernels, namely: K2n+1,n+2 and K2n+1,n for n = 2, 3. We study their
superconvergence properties for postprocessing of the DG approximation
of linear hyperbolic equations in the next section.

Table 2 summarizes the linear system of equations used to compute kernel
coefficients for n = 2, 3 for both K2n+1,n+2 and K2n+1,n using Theorem 2.
Furthermore, Table 3 summarizes their approximation properties and Figure 3
demonstrates these kernels.
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Fig. 3 Kernels introduced in Eq. (37) for specific choices of n and r.

Table 2 Linear system of equations constructed using Theorem 2 in order to compute the
kernel coefficients of K2n+1,n+2 and K2n+1,n.

K2n+1,n K2n+1,n+2

n = 2 n = 2
c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
12

c1 + 10c0 = 1
−60


c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
6

c1 + 8c0 = 1
−20

c0 = c4, c1 = c3 c0 = c4, c1 = c3
n = 3 n = 3

c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −1
8

5c2 + 44c1 + 189c0 = −13
80

23c2 + 428c1 + 3375c0 = −41
168


c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −5
24

7c2 + 52c1 + 207c0 = −23
48

77c2 + 1028c1 + 6933c0 = −1135
504

c2 = c4, c1 = c5, c0 = c6 c2 = c4, c1 = c5, c0 = c6

Table 3 Approximation properties of K2n+1,n and K2n+1,n+2 for n = 2, 3.

Support Continuity Polynom. Reprod.
k2n+1,n(x) 3n Cn−2 P2n

k2n+1,n+2(x) 3n+ 2 Cn P2n

To conclude this section, we remark that while we have only demonstrated
our results for the univariate case, they easily extend to higher dimensions
using tensor products. Moreover, while Eq. (3.1) defines a specific class of ker-
nels with a specific target application in mind, our approach can be generalized
to other classes of kernels, based on specific application requirements; for ex-
ample, one could generate combinations of B-splines that exactly interpolate
function samples. Such generalizations are beyond the scope of this article.

4 Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

We now provide a brief introduction to the symmetric and one-sided SIAC
kernels as examples of compactly-supported filters designed based on a linear
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combination of B-splines. The compact support of the SIAC kernel along with
its superconvergence properties in approximating the DG solutions is one of
the main reasons for its popularity in simulation science [7,27,20]. We first
focus on the symmetric SIAC kernel and then show how results from the
previous section also generalize to the one-sided SIAC kernel.

4.1 Symmetric SIAC Kernel

The symmetric SIAC kernels form a class of filtering techniques for postpro-
cessing of discontinuous Galerkin (DG) solutions. For a DG approximation of
order k + 1, the symmetric SIAC kernel is constructed using a linear combi-
nation of 2k + 1 symmetric B-splines of order k + 1,

K(2k+1,k+1)(x) =

2k∑
γ=0

cγbk+1(x+ k − γ), r = 2k (43)

where cγ denotes the kernel coefficients. The kernel coefficients cγ are fully
specified by enforcing the polynomial reproduction constraint in Theorem 2.

The finite number of B-splines used in the construction of the symmetric
SIAC kernel results in the compactness of its support: [− 3k+1

2 , 3k+1
2 ].

Since a component of the error of the DG method converges with order
2k+1 in the L2 norm, the SIAC kernel is constructed with 2k+1 B-splines and
forced to reproduce polynomials up to degree 2k [7]. SIAC filtering increases
the inter-element continuity up to Ck−1 and raises the convergence rate of
the discontinuous Galerkin (DG) solution from order k + 1 to order 2k + 1
for linear hyperbolic equations solved over a uniform mesh [7]. Convergence
properties of SIAC filtering and its effectiveness have been widely studied in
the literature [7,16,4,12–14].

While Theorem 2 uniquely specifies all the kernel coefficients of the SIAC
kernel of order k, conventionally the computation of the kernel coefficients
is accomplished by inverting a matrix-vector system with a large condition
number [20]. By revisiting the symmetric SIAC kernel construction and using
the results from Section 3, we introduce a new formulation of the symmetric
SIAC kernel construction that entails a direct and exact computation of the
kernel coefficients in terms of rational numbers. This new formulation also
results in the introduction of a family of approximation kernels from which
the symmetric SIAC kernel is a specific member with desirable and optimal
superconvergence properties. In general, we can represent the family of SIAC
kernels by K(r+1,n+1) as in Eq. 22. We can better understand the polynomial
reproduction of the symmetric SIAC kernel up to the approximation power of
bn+1, (n = k) through an analysis similar to the one presented in Theorem 1.
Table 4 summarizes such analysis for k = 1, 2, 3. Note that these equations
are the result of writing the continuous convolution of SIAC kernel with poly-
nomials in closed form rather than numerical evaluation of the convolution.
Theorem 1 ensures the full deployment of the approximation power of bn+1
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(n = k) along with enforcing the partition of unity as an essential requirement
to construct a valid kernel. As Table 4 shows, the linear system of equations
adopted from Theorem 1 is an under-determined system which represents a
family of symmetric kernels. It is important to note that all the kernels in this
family have compact support while providing Ck−1 continuity. The size of the
support varies with B-spline order, n+1 = k+1, and the number of B-splines,
r + 1 = 2k + 1.

Table 4 Linear system of equations adopted from Theorem 1 for p = 0, · · · , k.
k = 1 k = 2 k = 3

c1 + 2c0 = 1

{
c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
8

{
c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −1
6

The symmetric SIAC kernel as one of the members of this family attains
superconvergence order of 2k+ 1 through additional polynomial reproduction
constraint. Notice that the SIAC kernel is capable of reproducing polynomials
up to degree r = 2k. Theorem 2 can be directly used to exactly specify the
kernel coefficients for symmetric SIAC kernel by a simple Gaussian elimination,
without any need to numerically solve the system. Table 5 summarizes the
system and rational coefficients for the first three orders of the symmetric
SIAC kernel.

Table 5 Polynomial reproduction analysis of SIAC filer using Theorem 2 for k = 1, 2, 3.

k = 1 k = 2 k = 3{
c1 + 2c0 = 1

c0 = −1
12


c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
8

5c1 + 44c0 = −312
1920


c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −1
6

6c2 + 48c1 + 198c0 = −3
10

21c2 + 324c1 + 2349c0 = −12240
30240{

c1 = 7
6

c0 = c2 = −1
12


c2 = 437

320
c0 = c4 = −97

480

c1 = c3 = 37
1920

{
c3 = 12223

7560
c2 = c4 = −919

2520

c1 = c5 = 311
5040

c0 = c6 = −41
7560

Before we demonstrate how the new formulation of the symmetric SIAC
kernel can be extended for one-sided SIAC kernel, we present a theorem con-
cerning the superconvergence properties of symmetric kernels of typeK(r+1,n+1)

introduced in Eq. 37 for DG approximation of linear hyperbolic equations. The
following theorem specifically states how the error of the filtered DG solution
(using K(r+1,n+1)) depends upon the number of B-splines, r + 1, and the B-
spline order, n + 1. This provides a wider class of superconvergent filtered
solutions for the discontinuous Galerkin approximation.

Theorem 3 Let uh(x) denote the DG approximation of order k+1 to the true
solution u(x) ∈ Hs (Hilbert space), which solves a linear hyperbolic equation
(with upwind flux and periodic boundary conditions). Let K(r+1,n+1) denote
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the class of symmetric kernels of the form introduced in Eq. (37). For n ≥ 1,
and sufficiently smooth u(x) and based on the relation between r and n, we have
the following relation for the approximation error bound of the postprocessing
of uh(x) using K(r+1,n+1) at T > 0:

‖u(x)− (K
(r+1,n+1)
h ∗ uh)(x)‖0,Ω ≤ Chs (44)

where K
(r+1,n+1)
h (·) = 1

hK
(r+1,n+1)
h ( ·h ) and s = min{r+1, k+n+2, 2k+1} [7,

Theorem 3.3].

Remark: Here we summarize the important points regarding the relation
between the number and order of B-splines to the superconvergence error
analysis. In order to demonstrate this relation, we first decompose the left-
hand-side of Eq. 44 as

‖u(x)− (K
(r+1,n+1)
h ∗ uh)(x)‖0,Ω

≤ ‖u(x)− (K
(r+1,n+1)
h ∗ u)(x)︸ ︷︷ ︸

filter error

‖0,Ω + ‖ (K
(r+1,n+1)
h ∗ (u− uh))(x)︸ ︷︷ ︸

approximation error

‖0,Ω .

(45)

The first term is entirely dependent on the polynomial reproduction property
(not the B-spline order) and hence, this term can be bounded by defining
s = r + 1. The error bound for the second term (i.e., approximation error) in
Eq. (45) depends on the order of B-spline used to construct K(r+1,n+1). For
n ≥ k, the negative order norm property (see Eq. 7) can be used to bound the

error using s = 2k+ 1. On the other hand, (uh ∗K(r+1,n+1)
h )(x) ∈ Pk+n+1 and

therefore, s = k+n+ 2. Therefore, the error of the postprocessed solution can
be bounded by defining s = min{r + 1, k + n+ 2, 2k + 1}.

4.2 One-sided SIAC Kernel

Due to the symmetric nature of the previously described SIAC kernel around
the evaluation point, its utility for postprocessing near the boundaries or
shocks is limited. In order to solve this problem, one-sided SIAC kernels have
been introduced [24,35] of the form

K(r+1,n+1)(x̄) =

r∑
γ=0

cγbn+1(x̄− xγ) (46)

where cγ denotes the kernel coefficient, bn+1(x) denotes the symmetric B-spline
of order n+ 1, x̄ denotes the evaluation point and xγ represents the B-splines
centers defined as

xγ = −r
2

+ γ + ζ(x̄), γ = 0, · · · , r. (47)

ζ(x̄) in this relation represents a shift function as defined in [24,35]. Note that
for the one-sided kernel, the kernel coefficients depend on the evaluation point
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(unlike the symmetric SIAC kernel). Therefore, for the rest of the discussion
we use cγ(x̄) to denote the position-dependent kernel coefficients. Similar to
symmetric SIAC kernel, the polynomial reproduction up to degree r uniquely
specifies all the kernel coefficients for the one-sided SIAC kernel. The following
theorem demonstrates how the results from Section 3 can be used in order to
compute the kernel coefficients for one-sided SIAC kernel.

Theorem 4 The kernel coefficients of the one-sided SIAC kernel introduced
in Eq. 46 with polynomial reproduction property for polynomials of degree up
to r can be uniquely specified using the following relations:

(1)

r∑
γ=0

cγ(x̄) = 1

(2)

r∑
γ=0

cγ(x̄)

p∑
m=0

[[−xγ ]]
m
Gp−m(x̄) = [[x̄]]

p
, p = 0, · · · , n

(3)

r∑
γ=0

cγ(x̄)

p∑
m=0

[[−xγ ]]
m

(
bn+1(x̄) ∗ [[x̄]]

p−m
)

= [[x̄]]
p
, p = 0, · · · , r.

(48)

Proof The polynomial reproduction property of the one-sided SIAC kernel can
be rewritten in terms of a B-spline convolution (similar to the proof provided
for Theorem 1) as

r∑
γ=0

cγ(x̄)

p∑
m=0

[[−xγ ]]
m

(
bn+1(x̄) ∗ [[x̄]]

p−m
)

= [[x̄]]
p
, p = 0, · · · , r. (49)

Note that the kernel coefficients cγ(x̄) are dependent on the evaluation points,
however, they are not part of the convolution. Therefore, the proof follows
from Theorem 1 (for p ≤ n) and similar to Theorem 2 (for n < p < r). 2

5 Numerical Results

In this section, we compare and contrast various choices of kernels we dis-
cussed in the previous section in terms of their approximation error behavior.
The first set of results provide some insight about how function approxima-
tion using various choices of kernels would differ from one another for a simple
1D example using semi-discrete convolution. We have generated a set of uni-
formly spaced sample points and approximated the underlying 1D function
using various choices of quadratic kernels, namely: quadratic B-spline using
proper quasi-interpolation, symmetric SIAC kernel and cardinal spline func-
tion. Figure 4 demonstrates the approximated functions in blue curves. Note
that compared to quadratic B-spline approximation, both SIAC filtering and
cardinal spline interpolation provide a better approximation for the sampling
points, while the cardinal spline provides exact interpolation of the sampling
points.
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Fig. 4 The effect of using various kernels in the reconstruction of a 1D random function
using uniformly spaced sampling points and semi-discrete convolution. The function ap-
proximation carried out using various kernels namely: symmetric SIAC kernel for n = 2,
cardinal quadratic spline and quadratic B-spline along with proper quasi-interpolation. The
blue curve in the figure represents the approximated function and the function sample points
are shown as red points.

Our second set of numerical results aims to study the effect of using various
choices of the kernels introduced in postprocessing the DG approximation of
a differential equation using quadrature approximation [19] of the continuous
convolution in 2D. Note that the kernels introduced in Section 3 can all be
easily extended to 2D using tensor products. For this example, we used the DG
approximation of the linear transport equation at the final time as reported
in [14]:

ut +5 · u = 0, u(x, 0) = sin(x+ y), x ∈ Ω = [0, 2π]2. (50)

A DG approximation of the equation above consists of a discontinuous ap-
proximate solution uh over a spatial discretization of the domain, Ωh. For
each element eh ∈ Ωh, we seek uh ∈ Vh where Vh denotes the space of piece-
wise polynomials of degree k. Considering a test function vh ∈ Vh and the weak
formulation of the transport equation above, for each element eh we have∫

eh

(uh)tv dx−
∫
eh

auh · 5v dx+

∫
Γeh

âuh · n ds = 0, (51)

where n denotes the unit outward normal, Γeh denotes the boundary of element

eh and âhh is the numerical flux. One can find uh ∈ Vh such that the above
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equation is satisfied for all test functions in Vh. For the purpose of the current
manuscript, we consider an upwind flux to find uh and used Nektar++ software
package [1] in order to find the DG approximation.

The postprocessing of the DG solution uh(x) at the final time T has been
carried out through the quadrature approximation procedure proposed in [19].
The approximation error for all the examples is defined as the difference be-
tween the postprocessed DG solution and the true solution:Kh(x)∗uh(x)−u(x)
where Kh(x) represents a generic scaled kernel, uh(x) the DG solution and
u(x) the true solution of Eq. (50). For all the experiments, we have chosen 80
sampling points over each mesh element to compute the approximation errors.

For cardinal spline interpolation of the DG solution using continuous con-
volution, special care is required in the interpretation of the results because the
infinite support of the cardinal spline filter has been truncated for evaluation.
We have used 17 B-splines to form a truncated version of the quadratic cardinal
spline filter. As Table 6 demonstrates postprocessing of the DG approximation
using a cardinal B-spline filter only increases the order of convergence of the
postprocessed solution by one.

Table 6 L2 and L∞ norm of the approximation error using cardinal quadratic spline
kernel.

Quadrilateral Meshes
DG Cardinal B-spline

Mesh L2 error order L∞ error order L2 error order L∞ error order
P2

202 9.75e-05 – 5.09e-04 – 5.1e-05 – 7.22e-05 –
402 1.22e-05 2.99 6.43e-05 2.98 3.06e-06 4.05 4.33e-06 4.05
802 1.52e-06 3.00 8.06e-06 2.99 1.41e-07 4.43 1.99e-07 4.44
1602 1.90e-07 3.00 1.01e-06 2.99 1.22e-08 3.53 1.73e-08 3.52

Table 7 presents the approximation errors corresponding to various choices
of kernels for different resolutions of a quadrilateral mesh. In addition, Figure 5
shows the contour plot of the approximation error over the whole domain in
logarithmic scale. Note that all the kernels reported in this table use 2n + 1
B-splines while the order of B-spline differs in each case. The numerical val-
ues in Table 7 verifies the 2k + 1 order of convergence of symmetric SIAC
filter (as reported in [14]) and kernels constructed using B-spline orders be-
yond n+ 1 as proved in Theorem 3. While the numerical results demonstrate
better order of convergence for kernels with lower orders of B-splines in some
cases, the contour plots in Figure 5 clearly show the oscillatory nature of the
approximation error compared to SIAC kernel and kernels constructed using
higher-order B-splines. Notice that the order of convergence has dropped in
case of quadratic polynomial for K2n+1,n−1 and in case of cubic polynomial at
resolution 1602. It is worth noting that all the experiments have been carried
out up to basic floating point precision. For higher resolutions and higher-order
polynomial orders (for instance in our case, quartic polynomial at resolution
1602), extended precision is required in order to achieve the order of accuracy
expected.
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Using results summarized in Table 3, it is easy to conclude that kernels
constructed using B-splines of order less than n + 1 provides slightly higher
computational efficiency compared to symmetric SIAC kernel of the same or-
der. In contrast, kernels constructed using B-splines of order higher than n+1
increases the smoothness of the the postprocessed results with a slightly higher
computational cost. These properties can be used to decide which type of
kernel to be used in the application based on the tradeoff required between
computational efficiency, smoothness and superconvergence considerations.

Table 7 L2 and L∞ norm of the approximation error for different kernels discussed in
Sections 3 and 4.

Quadrilateral Meshes
DG K2n+1,n−1 K2n+1,n

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order
P2

202 9.75e-05 – 5.09e-04 – 3.75e-06 – 1.02e-05 – 2.42e-06 – 3.43e-06 –
402 1.22e-05 2.99 6.43e-05 2.98 2.37e-07 3.98 5.82e-07 4.13 3.85e-08 5.97 5.57e-08 5.94
802 1.52e-06 3.00 8.06e-06 2.99 1.50e-08 3.98 3.54e-08 4.03 6.21e-10 5.95 9.43e-10 5.88
1602 1.90e-07 3.00 1.00e-06 3.01 9.40e-10 3.99 2.2e-09 4.00 1.07e-11 5.85 1.85e-11 5.67
P3

202 1.93e-06 – 1.14e-05 – 4.16e-08 – 5.98e-08 – 8.12e-08 – 1.14e-08 –
402 1.2e-07 4.00 7.22e-07 3.98 1.65e-10 7.97 2.47e-10 7.91 3.23e-10 7.97 4.57e-10 4.64
802 7.54e-09 3.99 4.52e-08 3.99 6.65e-13 7.95 1.14e-12 7.75 1.26e-12 8.00 1.79e-12 7.99
1602 4.71e-10 4.00 2.83e-09 3.99 7.01e-15 6.56 3.34e-14 5.09 5.23e-15 7.77 7.90e-15 7.82
P4

202 3.04e-08 – 1.99e-07 – 1.55e-09 – 2.19e-09 – 2.71e-09 – 3.84e-09 –
402 9.53e-10 4.99 6.3e-09 4.98 1.55e-12 9.96 2.20e-12 9.95 2.72e-12 9.96 3.86e-12 9.95
802 2.97e-11 5.00 1.97e-10 4.99 2.20e-15 9.46 8.77e-15 7.97 3.48e-15 9.61 1.29e-14 8.22
1602 9.33e-13 4.99 6.17e-12 4.99 4.47e-16 2.29 2.58e-15 1.76 5.04e-16 2.78 2.52e-15 2.35

DG K2n+1,n+1 (SIAC) K2n+1,n+2

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order
P2

202 9.75e-05 – 5.09e-04 – 4.47e-06 – 6.34e-06 – 7.23e-06 – 1.02e-06 –
402 1.22e-05 2.99 6.43e-05 2.98 7.09e-08 5.97 1.00e-07 5.98 1.14e-07 5.98 1.62e-07 2.65
802 1.52e-06 3.00 8.06e-06 2.99 1.11e-09 5.99 1.57e-09 5.99 1.80e-09 5.98 2.55e-09 5.98
1602 1.90e-07 3.00 1.00e-06 3.01 1.73e-11 6.00 2.46e-11 5.99 2.82e-11 5.99 3.99e-11 5.99
P3

202 1.93e-06 – 1.14e-05 – 1.37e-07 – 1.94e-07 – 2.14e-07 – 3.03e-07 –
402 1.2e-07 4.00 7.22e-07 3.98 5.49e-10 7.96 7.77e-10 7.96 8.59e-10 7.96 1.21e-09 7.96
802 7.54e-09 3.99 4.52e-08 3.99 2.15e-12 7.99 3.05e-12 7.99 3.37e-12 7.99 4.78e-12 7.98
1602 4.71e-10 4.00 2.83e-09 3.99 9.21e-15 7.86 3.04e-14 6.64 1.37e-14 7.94 2.73e-14 7.45
P4

202 3.04e-08 – 1.99e-07 – 4.37e-09 – 6.18e-09 – 6.66e-09 – 9.42e-09 –
402 9.53e-10 4.99 6.3e-09 4.98 4.40e-12 9.95 6.23e-12 9.95 6.73e-12 9.95 9.51e-12 9.95
802 2.97e-11 5.00 1.97e-10 4.99 3.16e-15 10.44 1.13e-14 9.10 7.10e-15 9.88 1.03e-14 9.85
1602 9.33e-13 4.99 6.17e-12 4.99 6.43e-16 2.29 2.44e-15 2.21 6.23e-16 3.51 2.41e-15 2.09

6 Conclusion

In this paper we presented and established the theoretical results that demon-
strate the connection between symmetric SIAC kernel construction and ap-
proximation theory. Specifically, we derived a closed formulation for the con-
volution of SIAC kernels with polynomials that leads to a direct and exact
scheme to solve for the kernel coefficients rather than through numerical com-
putation. Moreover, studying the symmetric SIAC kernel in this framework,
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Fig. 5 Contour plot of the approximation error in a logarithmic scale. (a) SIAC kernel
(n = 2), (b) Cardinal quadratic interpolation, (c) K5,2, (d) K5,4.

introduces a family of kernels from which symmetric SIAC kernel satisfies
2n+ 1 order of superconvergence property. The introduction of this family of
kernels to the community can be helpful to design application-specific kernels
from this family with specific design criteria. For demonstration, we have stud-
ied variations of the symmetric SIAC kernel where the order of the B-spline
used to construct the symmetric SIAC kernel was changed. We provided theo-
retical results demonstrating that the order 2n+ 1 superconvergence property
for linear hyperbolic equations can be preserved when the order of B-splines
is higher than the order used in the original symmetric SIAC kernel. Studying
other variations of the symmetric SIAC kernel in the family introduced along
with their superconvergence properties is an interesting open question which
can provide a potential direction for future research. Another interesting line
of future research is to investigate the postprocessing of DG solutions with
discontinuity and shocks.
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7. Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by post-processing for
finite element methods for hyperbolic equations. Mathematics of Computation 72(242),
577–606 (2003)

8. Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric modeling with splines - an introduc-
tion. A K Peters (2001)

9. De Boor, C., Daniel, J.: Splines with Non-Negative B-Spline Coefficients. CNA. Defense
Technical Information Center (1973)

10. DeBoor, C.: A practical guide to splines. Springer (1978)
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