FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 34, No 4 (2019), 729–743 https://doi.org/10.22190/FUMI1904729M

A SURVEY ON THE AUTOMORPHISM GROUPS OF THE COMMUTING GRAPHS AND POWER GRAPHS

Mahsa Mirzargar

C2019 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. Let G be a finite group. The power graph P(G) of a group G is the graph whose vertex set is the set of group elements where two elements are adjacent if one is a power of the other. The commuting graph $\Delta(G)$ of a group G, is the graph whose vertices are the group elements, two of them are joined if they commute. When the vertex set is $G \setminus Z(G)$, this graph is denoted by $\Gamma(G)$. Since the results based on the automorphism groups of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism groups of power graphs and commuting graphs obtained in the literature.

Keywords. Finite group; graph; vertex set; commuting graph; automorphism groups.

1. Introduction

There are many connections between graphs and groups. Generating graphs from semigroups and groups has a long history. In 1964, Bosak [6] studied a certain graph over semigroups. In [13], Zelinka studied the intersection graphs of nontrivial subgroups of finite Abelian groups. The well-known study of a directed graphs defined on the elements of a group is the Cayley digraph [7, 22, 40]. The investigation of graphs like these is very important, because they have valuable and numerous applications presented, for example, in the books [27], [28] and [29]. The directed power graph of a group was introduced by Kelarev and Quinn [24]. The definition was formulated so that it applied to semigroups as well. Accordingly, the power graphs of semigroups were first considered in [25], [23] and [26]. It is also explained in the survey [2] that the definition given in [24] covers all undirected graphs as well. This means that the undirected power graphs were also defined in [24] (see [2] for more detailed explanations). All of these papers used only the brief term 'power graph', even though they covered both directed and undirected graphs, namely,

Received March 22, 2019; accepted July 19, 2019

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 65F05;\ Secondary:\ 46L05,\ 11Y50.$

the divisibility graphs of semigroups. Let S be a semigroup, the divisibility graph, Div(S), of a semigroup S is a directed graph with vertex set S and there is an arc from u to v if and only if $u \neq v$ and u|v, i.e., the ideal generated by v contains u. On the other hand, the power graph, $\overrightarrow{P}(S)$, of a semigroup S is a directed graph in which the set of vertices is again S and for $a, b \in S$ there is an arc from a to b if and only if $a \neq b$ and $b = a^m$ for some positive integer m.

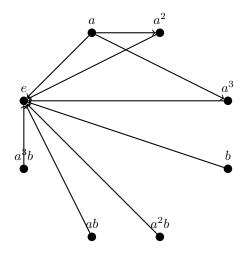


Figure 1. The directed power graph of the dihedral group D_8 .

The undirected power graph P(S) was also considered by Chakrabarty, Ghosh and Sen in [11]. Recall that P(S) has vertex set S and two vertices $a, b \in S$ are adjacent if and only if $a \neq b$ and $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$ (which is equivalent to saying $a \neq b$ and $a^m = b$ or $b^m = a$ for some positive integer m). As a consequence, they proved that P(G) is connected for any finite group G and P(G) is complete if and only if G is a cyclic group of order 1 or p^m [11].

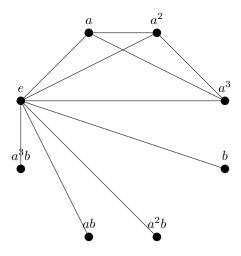


Figure 2. The undirected power graph of the dihedral group D_8 .

The undirected power graphs became the main focus of study in [11] and in the subsequent papers by P. J. Cameron et al. [8, 9], which introduced the use of the brief term 'power graph' in the second meaning of an undirected power graph. For a group G, the digraph $\vec{P}(G)$ was considered in [37] as the main subject of study. The interested readers can be consulted [2, 32, 1] for more information about the power graphs. In this paper, we are also interested in the well-known commuting graphs and their automorphism groups. Let G be a non-abelian group and let Z(G) be the center of G. Associate a graph $\Gamma(G)$ with G as follows: Take $G \setminus Z(G)$ as the vertices of $\Gamma(G)$ and join two distinct vertices x and y, whenever xy = yx. The complement of the $\Gamma(G)$ is said to be the noncommuting graph. The noncommuting graph was first considered by Paul Erdos, when he posed the following problem in 1975 [36]: Let G be a group whose noncommuting graph has no infinite complete subgraph. Is it true that there is a finite bound on the cardinalities of complete subgraphs of the noncommuting graph of G? B. H. Neumann [36] answered positively Erdos' question. We refer the readers to [3, 4, 14, 35, 31] for more details about the noncommuting graph. In [1], authors related the power graph to the commuting graph and characterize when they are equal for finite groups. A new graph pops up while considering these graphs, a graph whose vertex set consists of all group elements, in which two vertices x and y are adjacent if they generate a cyclic group. They called this graph as the enhanced power graph of G. The enhanced power graph contains the power graph and is a subgraph of the commuting graph. We consider the commuting graph with vertex set G and denoted it by $\Delta(G)$.

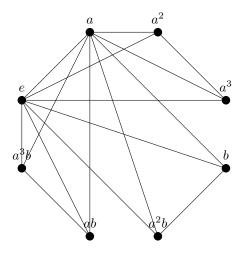


Figure 3. The commuting graph $\Delta(D_8)$.

2. Preliminaries and background information

An action of a group G on a set X is the choice, for each $g \in G$ of a permutation $\pi_q: X \to X$ such that the following two conditions hold:

- 1. π_e is the identity: $\pi_e(x) = x$ for each $x \in X$,
- 2. for every g_1, g_2 in $G, \pi_{g_1} \circ \pi_{g_2} = \pi_{g_1g_2}$.

For example, any group G acts on itself (X = G) by left multiplication functions. A group action of G on X is said to be *faithful* if different elements of G act on Xin different ways: when $g_1 \neq g_2$ in G, there is an $x \in X$ such that $g_1 \Delta x \neq g_2 \Delta x$. For any graph Γ , we denote the sets of the vertices and the edges of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. Suppose $v \in V(\Gamma)$ and $V_1(\Gamma) \subset V(\Gamma)$, then N(v) is the set of neighbours of v and $\langle V_1(\Gamma) \rangle$ is the subgraph of Γ induced by $V_1(\Gamma)$. The closed neighbourhood of a vertex x, denoted by N[x], is the set of its neighbours and itself. The complement of Γ is the graph $\overline{\Gamma}$ on the same vertices such that two vertices of $\overline{\Gamma}$ are adjacent if and only if they are not adjacent in Γ . For two graphs with disjoint vertex sets V_1 and V_2 their union is the graph H in which $V(H) = V_1 \cup V_2$ and $E(H) = E_1 \cup E_2$. Define nH to be the union of n disjoint copies of G. The automorphism group of a graph Γ is that set of all permutations on $V(\Gamma)$ that fix as a set the edges $E(\Gamma)$. The set of all automorphisms of a graph Γ forms a permutation group, $Aut(\Gamma)$, acting on the object set $V(\Gamma)$. See [10] for the terminology and main results of permutation group theory. Let A and B be permutation groups acting on object sets X and Y, respectively. Define $B \wr A = \{(a, f) \mid a \in A, f : X \to B\}, (a, f)(x, y) = (ax, b_x y) \text{ where } f(x) = b_x. B \wr A$ is said to be wreath product. It acts on $X \times Y$ as follows: for each $a \in A$ and any sequence b_1, b_2, \dots, b_n (where n = |X|) in B, there is a unique permutation in $A \wr B$ written $(a; b_1, \dots, b_n)$, and $(a; b_1, \dots, b_n)(x_i, y_i) = (ax_i, b_i y_i)$. Suppose S_n denotes the symmetric group on $\{1, 2, \dots, n\}$, φ is the Euler's totient function. In what follows, we describe some important results relating the automorphism groups of a graph which are crucial in this paper. Frucht [18] described if Γ is a connected graph, then $Aut(n\Gamma) \cong (Aut(\Gamma)) \wr S_n$, if no component of Γ_1 is isomorphic with a component of Γ_2 , then $Aut(\Gamma_1 \cup \Gamma_2) \cong Aut(\Gamma_1) \times Aut(\Gamma_2)$ and applying the last two theorems we have the result: Let $\Gamma = n_1 \Gamma_1 \cup n_2 \Gamma_2 \cup \cdots \cup n_r \Gamma_r$, where n_i is the number of components of Γ isomorphic to Γ_i , then

$$Aut(\Gamma) \cong ((Aut(\Gamma_1)) \wr S_{n_1}) \times ((Aut(\Gamma_2)) \wr S_{n_2}) \times \dots \times ((Aut(\Gamma_r)) \wr S_{n_r}).$$

An operation \cdot on the set S is associative if it satisfies the following associative law: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for all $x, y, z \in S$. A semigroup is a set S equipped with an associative binary operation \cdot . The set of the orders of all elements of Gis denoted by $\pi_e(G)$ and is said to be the *spectrum* of G. For $n \in N$, the cyclic group of order n can be defined as the group $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ of residues modulo n, the set $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ is the cyclic group generated by g in G. For a prime p, a group G is said to be an elementary abelian p-group if G is finite, abelian and

every nontrivial element of G has order p. A group G is an AC-group, whenever the centralizers of non-central elements are abelian. The dihedral group D_{2n} is an example of an AC-group. The group G is said to be an EPPO-group, if all elements of G have prime power order.

3. Automorphism groups of power graphs

The first result about the automorphism groups of power graphs was obtained by P. Cameron in [8], where he explained that when the automorphism group and its graph are equal. P. Cameron proved the only finite group G for which Aut(G) = Aut(P(G)) is the Klein group $Z_2 \times Z_2$.

In 2013, Doostabadi, Erfanian and Jafarzadeh asserted that the full automorphism group of the power graph of the cyclic group Z_n is isomorphic to the direct product of some symmetry groups.

Conjecture 3.1. [16] For every positive integer n,

$$Aut(P(Z_n)) \cong S_{\varphi(n)+1} \times \prod_{d \in D(n) \setminus \{1,n\}} S_{\varphi(d)}$$

where D(n) is the set of positive divisors of n, and φ is the Euler's totient function.

In fact, if n is a prime power, then $P(Z_n)$ is a complete graph by [11] which implies that $Aut(P(Z_n) \cong S_n$. Hence, the conjecture does not hold if $n = p^m$ for any prime p and integer m > 2. In [17], proved that this conjecture holds for the remaining case. Feng, Ma and Wang [17], describe the full automorphism group of the power (di)graph of an arbitrary finite group. As an application, this conjecture is valid if n is not a prime power. Denote by C(G) the set of all cyclic subgroups of G. For $C \in C(G)$, let [C] denote the set of all generators of C. Write

$$C(G) = \{C_1, \dots C_k\} \text{ and } [C_i] = \{[C_i]_1, \dots [C_i]_{s_i}\}.$$

Define $\mathbf{P}(G)$ as the set of permutations σ on C(G) preserving order, inclusion and noninclusion, i.e., $|C_i^{\sigma}| = |C_i|$ for each $i \in \{1, \dots, k\}$ and $C_i \subseteq C_j$ if and only if $C_i^{\sigma} \subseteq C_j^{\sigma}$. Note that $\mathbf{P}(G)$ is a permutation group on C(G). This group induces the faithful action on the set G:

$$(3.1) G \times \mathbf{P}(G) \longrightarrow G, ([C_i]_j, \sigma) \longmapsto [C_i^{\sigma}]_j.$$

For $\Omega \subseteq G$, let S_{Ω} denote the symmetric group on Ω . Since G is the disjoint union of $[C_1], \dots, [C_k]$, we get the faithful group action on the set G:

(3.2)
$$G \times \prod_{i=1}^{\kappa} S_{[C_i]} \longrightarrow G, \quad ([C_i]_j, (\xi_1, \cdots, \xi_k)) \longmapsto ([C_i]_j)^{\xi_i}.$$

By using the above-mentioned symbols we have:

Theorem 3.1. [17] Let G be a finite group. Then

$$Aut(\overrightarrow{P}(G)) = (\prod_{i=1}^{k} S_{[C_i]}) \times \boldsymbol{P}(G),$$

where P(G) and $\prod_{i=1}^{k} S_{[C_i]}$ act on G as in (3.1) and (3.2), respectively.

In the power graph P(G), for $x, y \in G$, define $x \equiv y$ if N[x] = N[y]. Observe that \equiv is an equivalence relation. Let \bar{x} denote the equivalence class containing x. Write

$$\mathcal{U}(G) = \{\bar{x} | x \in G\} = \{\bar{u}_1, \cdots, \bar{u}_l\}.$$

Since G is the disjoint union of u_1, \dots, u_l , the following is a faithful group action on the set G:

(3.3)
$$G \times \prod_{i=1}^{l} S_{\bar{u}_i} \longrightarrow G, \quad (x, (\tau_1, \tau_2, \cdots, \tau_l)) \longmapsto x^{\tau_i}, \quad where \quad x \in \bar{u}_i.$$

Similar to the last theorem, for the automorphism groups of undirected power graphs we have:

Theorem 3.2. [17] Let G be a finite group. Then

$$Aut(P(G)) = (\prod_{i=1}^{l} S_{\bar{u}_i}) \times \boldsymbol{P}(G),$$

where $\mathbf{P}(G)$ and $\prod_{i=1}^{l} S_{\bar{u}_i}$ act on G as in (3.1) and (3.3), respectively.

By combining Theorems 3.1 and 3.2, the authors in [17], obtained that $Aut(P(G)) = Aut(\overrightarrow{P}(G))$ if and only if x = [x] for each $x \in G$. Indeed, this result demonstrates relationship between power graphs and directed power graphs.

A graph Γ is said to be a *subgraph* of another graph Δ (or Δ is a supergraph of Γ), if $V(\Gamma) \subset V(\Delta)$ and $E(\Gamma) \subset E(\Delta)$. Hamzeh and Ashrafi [19] defined the main supergraph $\mathcal{S}(G)$ of P(G) with the vertex set G and two elements $x, y \in G$ are adjacent if and only if o(x)|o(y) or o(y)|o(x) and proved that there is not a group G, such that $Aut(\mathcal{S}(G)) = Aut(G)$. In what follows, $\Omega_{a_i}(G) = |\{y|o(y) = a_i\}|$. Authors in [19] also define the graph Δ with vertex set $V(\delta) = \pi_e(G)$ and two vertices a_i and a_j are adjacent if and only if $a_i|a_j$ or $a_j|a_i$.

Theorem 3.3. [19] Let G be a finite group with spectrum $\pi_e(G) = \{a_1, \dots, a_k\}$ and choose a representative set $\{t_1, t_2, \dots, t_k\}$, where for each $i, 1 \leq i \leq k, ti \in K_{\Omega_{a_i}}(G)$. Then,

1. If $deg(t_i)$'s are distinct then $Aut(\mathcal{S}(G)) = S_{\Omega_{a_1}}(G) \times \cdots \times S_{\Omega_{a_k}}(G)$.

- 2. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, any two distinct vertices of $K_{\Omega_{a_{i_1}}}(G), \cdots, K_{\Omega_{a_{i_r}}}(G)$ are adjacent and $N_{\Delta}[a_{i_1}] = \cdots = N_{\Delta}[a_{i_r}]$ then $Aut(\mathcal{S}(G))$ has a subgroup isomorphic to $S_{\Omega_{a_{i_1}}}(G) + \cdots + \Omega_{a_{i_r}}(G)$.
- 3. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, all vertices of $K_{\Omega_{a_{i_1}}}(G), \cdots, K_{\Omega_{a_{i_r}}}(G)$ are adjacent and $N_{\Delta}[a_{i_l}]$'s are distinct then $Aut(\mathcal{S}(G))$ has a subgroup isomorphic to $S_{\Omega_{a_{i_1}}}(G) \times \cdots \times S_{\Omega_{a_{i_r}}}(G)$.
- 4. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, $N_{\Delta}[a_{i_1}] = \cdots = N_{\Delta}[a_{i_r}]$ and for each two $m, n, 1 \leq m, n \leq r$, $K_{\Omega_{a_{i_m}}}(G)$ and $K_{\Omega_{a_{i_n}}}(G)$ are disjoint then $Aut(\mathcal{S}(G))$ has a subgroup isomorphic to $S_{\Omega_{a_{i_1}}}(G) \geq S_r$.
- 5. If $deg(t_{i_1}) = \cdots = deg(t_{i_r}), N_{\Delta}[a_{i_l}]$'s are distinct and for each $m, n, 1 \leq m, n \leq r, K_{\Omega_{a_{i_m}}}(G)$ and $K_{\Omega_{a_{i_n}}}(G)$ are disjoint then $Aut(\mathcal{S}(G))$ has a subgroup isomorphic to $S_{\Omega_{a_{i_n}}}(G) \times \cdots \times S_{\Omega_{a_{i_n}}}(G)$.
- 6. $Aut(\mathcal{S}(G)) = A_1 \times \cdots \times A_q$, where $A_i, 1 \leq i \leq q$, are subgroups appeared in Cases (2-5).

In [[20], Theorem 2.8], it is proved that if G is an EPPO-group of order $p_1^{n_1} \cdots p_k^{n_k}$ and $V_i = \{1 \neq g \in G \mid o(g) | p_i^{n_i} \}$ then $\mathcal{S}(G) = K_1 + (\bigcup_{i=1}^k K_{|V_i|})$. The authors applied the structure of $\mathcal{S}(G)$ to determine its automorphism.

Theorem 3.4. [19] Let G be a finite group and e_1, \dots, e_t are distinct values of $|V_1|, \dots, |V_k|$. Define $B_i = |\{|V_j| \mid |V_j| = e_i\}|$. Then,

$$Aut(\mathcal{S}(G)) = (S_{|V_1|} \wr S_{B_1}) \times \cdots \times (S_{|V_k|} \wr S_{B_k}).$$

Suppose G is a finite group and $C(G) = \{C_1, \dots, C_k\}$ is the set of all cyclic subgroups of G. Define L_G to be the graph with vertex set C(G) in which two cyclic subgroups C_i and C_j are adjacent if one is contained in the other or there is a cyclic subgroup C_k such that $C_i \subseteq C_k$ and $C_j \subseteq C_k$. It is clear that the subgraphs of P(G)induced by a cyclic subgroup are complete. So, $P(G) = W_G[K_{b_1}, K_{b_2}, \dots, K_{b_k}]$ with $b_i = \varphi(|C_i|)$.

Theorem 3.5. [19] Let G be a finite group with $C(G) = \{C_1, \dots, C_k\}$ and choose a representative set $\{t_1, t_2, \dots, t_k\}$, where for each $i, 1 \leq i \leq k, ti \in K_{b_i}$. Then,

- 1. If $deg(t_i)$'s are distinct then $Aut(P(G)) = S_{b_1} \times \cdots \times S_{b_k}$.
- 2. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, any two distinct vertices of $K_{b_{i_1}}, \cdots, K_{b_{i_r}}$ are adjacent and $N_{W_G}[C_{i_1}] = \cdots = N_{W_G}[C_{i_r}]$ then Aut(P(G)) has a subgroup isomorphic to $S_{b_{a_{i_1}}}, \dots, b_{a_{i_r}}$.

- 3. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, all vertices of $K_{b_{i_1}}, \cdots, K_{b_{i_r}}$ are adjacent and $N_{W_G}[C_{i_l}]$'s are distinct then Aut(P(G)) has a subgroup isomorphic to $S_{b_{i_1}} \times \cdots \times S_{b_{i_r}}$.
- 4. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, $N_{W_G}[C_{i_1}] = \cdots = N_{W_G}[C_{i_r}]$ and for each two $m, n, 1 \leq m, n \leq r$, $K_{b_{i_m}}$ and $K_{b_{i_n}}$ are disjoint then Aut(P(G)) has a subgroup isomorphic to $S_{b_{i_1}} \wr S_r$.
- 5. If $deg(t_{i_1}) = \cdots = deg(t_{i_r})$, $N_{W_G}[C_{i_l}]$'s are distinct and for each $m, n, 1 \leq m, n \leq r$, $K_{b_{i_m}}$ and $K_{b_{i_n}}$ are disjoint then Aut(P(G)) has a subgroup isomorphic to $S_{b_{i_1}} \times \cdots \times S_{b_{i_r}}$.
- 6. $Aut(P(G)) = A_1 \times \cdots \times A_q$, where $A_i, 1 \le i \le q$, are subgroups appeared in Cases (2-5).

3.1. Examples

In this section, we present Aut(P(G)) and $Aut(\overrightarrow{P}(G))$ for some families of finite groups such as $Z_n, Z_n^p, D_{2n}, Q_{4n}, U_{6n}, V_{8n}$ and so on. These results obtained in several papers in different ways. In [5], the authors used the graph structure from [30] and computed the automorphism groups of P(G) for the above groups. In [17], the authors by using Theorem 3.1 and Theorem 3.2, computed the automorphism groups of P(G) and $\overrightarrow{P}(G)$ for these groups. In [19], authors obtained these results from Theorem 3.3.

Example 3.1. [17] If n be a positive integer then,

$$Aut(\overrightarrow{P}(Z_n)) \cong \prod_{d \in D(n)} S_{\varphi(d)},$$

$$Aut(P(Z_n)) \cong \begin{cases} S_n & n \text{ is a prime power} \\ S_{\varphi(n)+1} \times \prod_{d \in D(n) \setminus \{1,n\}} S_{\varphi(d)} & otherwise \end{cases}$$

and if $n \geq 2$ then,

$$Aut(P(Z_p^n)) = Aut(\overrightarrow{P}(Z_p^n) \cong S_{p-1} \wr S_m$$

where $m = \frac{p^n - 1}{p - 1}$ and Z_p^n denote the elementary abelian *p*-group.

In the [21, 15], the dihedral group D_{2n} , semi-dihedral group SD_{2^n} , generalized quaternion group of Q_{4n} , semidihedral groups SD_{8n} are defined by the following presentations:

$$D_{2n} = \langle a, b \mid a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle,$$

$$SD_{2^n} = \langle a, b \mid a^{2^n} = b^2 = 1, b^{-1}ab = a^{-1} \rangle,$$

$$Q_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle,$$

$$U_{6n} = \langle a, b \mid a^{2n} = b^3 = 1, a^{-1}ba = b^{-1} \rangle,$$

$$V_{8n} = \langle a, b \mid a^{2n} = b^4 = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b \rangle.$$

Now, we are ready to state next example.

Example 3.2. [17] For $n \ge 3$,

$$\begin{aligned} Aut(\overrightarrow{P}(D_{2n})) &\cong & \prod_{d \in D(n)} S_{\varphi(d)} \times S_n, \\ Aut(P(D_{2n})) &\cong & \begin{cases} S_{n-1} \times S_n, & n \text{ is a prime power} \\ S_n \times \prod_{d \in D(n)} S_{\varphi(d)} & otherwise \end{cases}, \end{aligned}$$

and let $n \geq 3$ then,

$$\begin{aligned} Aut(\overrightarrow{P}(Q_{4n})) &\cong & \prod_{d \in D(2n)} S_{\varphi(d)} \times (S_2 \wr S_n), \\ Aut(P(Q_{4n})) &\cong & \begin{cases} S_2 \times S_{2n-2} \times (S_2 \wr S_n), & n \text{ is a power of } 2\\ \prod_{d \in D(2n)} S_{\varphi(d)} \times (S_2 \wr S_n) & otherwise \end{cases}. \end{aligned}$$

Example 3.3. [5] If k is nonnegative integer and satisfies $n = 3^k t$ for some positive integer t such that $3 \not t$ then,

$$Aut(P(U_{6n})) \cong \begin{cases} \prod_{d|3n} S_{\varphi(d)} \times \prod_{d|2n,d|h} S_{\varphi(d)} \wr S_3 & k = 0\\ \prod_{d|2n,d|h} S_{\varphi(d)} \wr S_3 \times \prod_{d|n} S_{\varphi(d)} \times \prod_{d|n,d|t} S_{\varphi(d)} \wr S_3 & k = 1\\ \prod_{d|2n,d|h} S_{\varphi(d)} \wr S_3 \times \prod_{d|n} S_{\varphi(d)} \times \prod_{d|3t,d|t} S_{\varphi(d)} \wr S_3 & k \ge 2 \end{cases},$$

if $n = 2^k t$ for a nonnegative k and some positive odd integer t then,

$$Aut(P(V_{8n})) \cong \begin{cases} S_{2n} \times S_2 \wr S_n \times \prod_{d|2n,d|f_n} S_{\varphi(d)} \wr S_2 \times \prod_{d|2n} S_{\varphi(d)} & k = 0\\ S_{2n+1} \times S_2 \wr S_n \times \prod_{l=1}^{k-1} S_{2l}^2 \times S_{2k} \wr S_2 & t = 1, k \ge 1\\ S_{2n} \times S_2 \wr S_n \times \prod_{d|t} S_{\varphi(d)}^4 \times \prod_{s=2}^k \prod_{d|2^s t, d|2^{s-1}t} S_{\varphi(d)}^2 & \\ \times \prod_{d|2^{k+1}t, d|2^kt} S_{\varphi(d)} \wr S_2 & t > 1, k \ge 1 \end{cases},$$

also,

$$Aut(P(SD_{8n})) \cong \begin{cases} S_{4n-2} \times S_{2n} \times (S_2 \wr S_n), & n \text{ is a power of } 2\\ \prod_{d|4n} S_{\varphi(d)} \times S_{2n} \times (S_2 \wr S_n) & otherwise \end{cases}$$

The smallest sporadic group is the first Mathieu group M_{11} , it has order 7920. There are many presentations for the group M_{11} , we give two of its known presentation, [39].

$$M_{11} \cong \langle a, b, c | a^{11} = b^5 = c^4 - (ac)^3 = 1, b^4 a b = a^4, c^3 b c = b^2 \rangle,$$

$$\cong \langle a, b, c, d | a^2 = b^2 = c^2 = d^2 = (ab)^5 = (bc)^3 = (bd)^4 = (cd)^3 = (abdbd)^3 = 1 \rangle.$$

The paper by Around (1960) increased the interest to finite simple groups, as Janko in Australia found (1965) the first new sporadic group J_1 a century later after Mathieu's. It turns out that J_1 had order 175560. A presentation for J_1 in terms of its standard generators is given below [12]:

$$J_1 \cong \langle a, b | a^2 = b^3 = (ab)^7 = (ab(abab^{-1})^3)^5 = (ab(abab^{-1})^6 abab(ab^{-1})^2)^2 = 1 > .$$

The automorphism groups of M_{11} and J_1 are determined as follows:

Example 3.4. [5] Let M_{11} be the first Mathieu group and J_1 be the first Janko group, then,

$$\begin{aligned} Aut(P(M_{11})) &\cong (S_{10} \wr S_{144}) \times (S_4 \wr S_{396}) \times (S_2 \wr S_{55}) \times ((S_6 \wr S_3) \times (S_2 \wr S_4) \times S_2) \wr S_{165}, \\ Aut(P(J_1)) &\cong (S_{10} \wr S_{596}) \times (S_6 \wr S_{4180}) \times (S_{18} \wr S_{1540}) \\ &\times ((S_2 \times S_8 \times S_4 \times (S_4 \wr S_3) \times (S_2 \wr S_5)) \wr S_2) \wr S_{1463}. \end{aligned}$$

Moreover, in [30] the automorphism groups of $P(Z_{pq})$, $P(Z_{pqr})$ and $P(Z_{p^2q^2})$ are calculated as follows:

$$\begin{aligned} Aut(P(Z_{pq})) &\cong S_{\varphi(pq)+1} \times S_{p-1} \times S_{q-1}, \\ Aut(P(Z_{pqr})) &\cong S_{\varphi(pqr)} \times S_{p-1} \times S_{q-1} \times S_{r-1} \times S_{\varphi(pq)} \times S_{\varphi(pr)} \times S_{\varphi(qr)}, \\ Aut(P(Z_{p^2q^2})) &\cong S_{\varphi(p^2q^2)+1} \times S_{p-1} \times S_{\varphi(p^2)} \times S_{q-1} \times S_{\varphi(q^2)} \times S_{\varphi(pq)} \times S_{\varphi(pq^2)} \times S_{\varphi(p^2q^2)}. \end{aligned}$$

,

As we mentioned in above Theorem 3.4 is playing a main role in finding automorphism group of power graphs. In [19], the authors obtained the following results from Theorem 3.3.

Example 3.5. [19] If n is odd, then

$$Aut(\mathcal{S}(D_{2n})) = \begin{cases} S_{n-1} \times S_n & n \text{ is a prime power} \\ S_n \times \prod_{d|n} S_{\varphi(d)} & otherwise \end{cases}$$

and if n is even then

$$Aut(\mathcal{S}(D_{2n})) = \begin{cases} S_{2n} & n \text{ is a power of } 2\\ S_{\varphi(n)+1} \times S_{n+1} \prod_{\{1,n,2\} \neq d \mid n} S_{\varphi(d)} & otherwise \end{cases},$$

if n is odd, then

$$Aut(\mathcal{S}(T_{4n})) = S_{2n} \times \prod_{d|2n} S_{\varphi(d)},$$

and if n is even then

$$Aut(\mathcal{S}(T_{4n})) = \begin{cases} S_{4n} & n \text{ is a power of } 2\\ S_{\varphi(2n)+1} \times S_{2n+2} \prod_{\{1,2n,4\} \neq d \mid 2n} S_{\varphi(d)} & otherwise \end{cases},$$

for arbitrary n,

$$Aut(\mathcal{S}(SD_{8n})) = \begin{cases} S_{8n} & n \text{ is a power of } 2\\ S_{\varphi(4n)+1} \times S_{2n+1} \times S_{2n+2} \prod_{\{1,4n,2,4\} \neq d \mid 4n} S_{\varphi(d)} & otherwise \end{cases}$$

if $n = 2^k$ then $Aut(\mathcal{S}(V_{8n})) \cong S_{8n}$, and if n is an odd prime then $Aut(\mathcal{S}(V_{8n})) = S_{2n+3} \times S_{2n} \times S_{3\varphi(n)} \times \prod_{\{1,2n,2\} \neq d \mid 2n} S_{\varphi(d)}$.

4. Automorphism groups of commuting graphs

The commuting graphs $\Delta(G)$ and $\Gamma(G)$ of a group G are defined in the introduction. The following theorem established the relation between Aut(G), $Aut(\Delta(G))$ and $Aut(\Gamma(G))$.

Theorem 4.1. [33] Let G be a finite group, then

- 1. $Aut(G) = Aut(\Delta(G))$ if and only if |G| = 1.
- 2. $Aut(\Delta(G)) \cong Aut(\Gamma(G)) \times S_{Z(G)}$.

Mirzargar, Pach and Ashrafi studied the subgroups of $Aut(\Delta(G))$ in [33, 34]. The first subgroups are $Aut(\Gamma(G))$ and Aut(G), then they added some automorphisms of graph to Aut(G) and constructed bigger subgroups. Define two permutations $\Phi_{x,y}, \phi: G \to G$ as follows: $\Phi_{x,y}$ fixed each element $a \in G \setminus \{x, y\}$ and maps x into y and vice-versa; and, the permutation ϕ is defined by $x \to x^{-1}$ for each element $x \in G$. They also defined $Aut^*(G) = \langle Aut(G), \phi \rangle$ and considered to the equality of the subgroups and the main group.

Theorem 4.2. [33] $Aut^*(G) = Aut(\Delta(G))$ if and only if $G \cong S_3$.

Let the cosets $Z(G)x_1, Z(G)x_2, \dots, Z(G)x_{m-1}$ of the group G/Z(G) and define a new graph $\Delta^u(G)$ with $V(\Delta^u(G)) = \{x_0 = 1, x_1, \dots, x_{m-1}\}$ and $E(\Delta^u(G)) = \{x_ix_j | x_ix_j = x_jx_i, 0 \le i < j \le m-1\}$. Notice when |Z(G)| = 1 then $\Delta(G) \cong \Delta^u(G)$. It is clear that every two elements in one of these cosets commute. Hence we have a complete graph in any of these cosets. On the other hand, if there exists $x_i \in Z(G)x_i, x_j \in Z(G)x_j$ satisfying $x_ix_j = x_jx_i$, then for every $y_i \in Z(G)x_i, y_j \in Z(G)x_j$ we have $y_iy_j = y_jy_i$. Finally, the set of all $\phi \in Aut(\Delta(G))$ such that for $a, b \in G$ if $ab^{-1} \in Z(G)$, then $\phi(a)\phi(b)^{-1} \in Z(G)$ is denoted by T. These notations are applied in [33] to prove two following theorems.

Theorem 4.3. [33] Let G be a group. Then,

- 1. $Aut(\Delta^u(G))$ is a subgroup of $Aut(\Delta(G))$. Moreover, $Aut(\Delta^u(G)) = Aut(\Delta(G))$ if and only if |Z(G)| = 1.
- 2. If G is not centerless then T is a subgroup of $Aut(\Delta(G))$, and $Aut(\Delta(G)) = T$ if and only if for each pair a, b of elements of G with $C_G(a) = C_G(b)$, we have $ab^{-1} \in Z(G)$.

Theorem 4.4. [33] Let $|Z(G)| \ge 2$, where G be a nonabelian group. If $T = Aut(\Delta(G))$ then G/Z(G) is an elementary abelian 2-group.

For a finite group G define a labelled graph $\Delta^{v}(G)$ as follows. For $a, b \in G$ let $a \sim b$ if $C_G(a) = C_G(b)$. Clearly, \sim is an equivalence relation, the equivalence class of $a \in G$ is $A(a) = \{x | C_G(x) = C_G(a)\}$. Let us denote the equivalence classes by A_1, \ldots, A_k , these are the vertices of $\Delta^v(G)$. Two vertices A_i and A_j are connected if and only if $a_i a_j = a_j a_i$, for some $a_i \in A_i, a_j \in A_j$. At first, we note that if there exists $a_i \in A_i, a_j \in A_j$ satisfying $a_i a_j = a_j a_i$, then for every $b_i \in A_i, b_j \in A_j$ we have $a_j \in C_G(a_i) = C_G(b_i)$. So, $b_i \in C_G(a_j) = C_G(b_j)$ implies that $b_i b_j = b_j b_i$. Each equivalence class is the union of some sets of the form tZ(G), hence there exists a positive integers c_i such that $|A_i| = c_i |Z(G)|$. Let $\alpha(A_i) = c_i$ be the label of the vertex A_i in $\Delta^v(G)$. One can see $\phi: V(\Delta^v(G)) \to V(\Delta^v(G))$ is an automorphism of the labelled graph $\Delta^{v}(G)$ if ϕ is a bijection, it preserves the edges (and the non-edges) and it preserves the labels. The automorphism group formed by these automorphisms is denoted by $Aut(\Delta^v(G))$. Define $S_{A_i} = \{f_\sigma \mid \sigma \in S_{|A_i|}, \forall x \in$ $A_i, f_\sigma(x) = \sigma(x), \forall x \notin A_i, f_\sigma(x) = x\}, 1 \le i \le k$. Clearly, S_{A_i} is a subgroup of $Aut(\Delta(G))$. The connection between $Aut(\Delta(G))$ and $Aut(\Delta^{v}(G))$ is described by the following theorem:

Theorem 4.5. [33] There is a subgroup A of $Aut(\Delta(G))$ such that $A \cong Aut(\Delta^v(G))$ and $Aut(\Delta(G)) = \langle S_{A_1}, \cdots, S_{A_k} \rangle \times A$.

In [38], Rocke proved that the following are equivalent:

- 1. G has abelian centralizers;
- 2. If xy = yx, then $C_G(x) = C_G(y)$ whenever $x, y \notin Z(G)$;
- 3. If xy = yx and xz = zx, then yz = zy whenever $x \notin Z(G)$;
- 4. If U and B are subgroups of G and $Z(G) < C_G(U) \le C_G(B) < G$ then $C_G(U) = C_G(B)$.

Therefore, the intersection of two proper element centralizers of an AC-group is the center of G. If G is an AC-group, then $\Delta(G)$ is a union of some complete graphs with all vertices adjacent to the elements of Z(G). So, $\Delta(G)$ is $n_1(C_G(x_1) \setminus Z(G)) \cup n_2(C_G(x_2) \setminus Z(G)) \cup \cdots \cup (n_r C_G(x_r) \setminus Z(G))$ and also every element of Z(G) is adjacent to all elements of G, such that for each $i, 1 \leq i \leq r$, we have n_i isomorphic components with complete graph of size $|C_G(x_i) \setminus Z(G)|$. In [33], the authors proved that if G is an AC-group with the above notations then,

$$Aut(\Delta(G)) \cong ((S_{|C_G(x_1)| - |Z(G)|}) \wr S_{n_1}) \times ((S_{|C_G(x_2)| - |Z(G)|}) \wr S_{n_2}) \times \cdots \\ \times ((S_{|C_G(x_n)| - |Z(G)|}) \wr S_{n_r}) \times S_{Z(G)}.$$

Finally, from [33], $|Aut(\Delta(G))|$ can not be a prime power or a square-free number. Moreover, $|Aut(\Delta(G))| = 1$ if and only if G is trivial, $Aut(\Gamma(G))$ is abelian if and only if G is a group of order 1 or 2. Also if |G| > 2 then $Aut(\Delta(G))$ is a nonabelian group.

Acknowledgements

We thank Prof. Alireza Ashrafi and one of the referees for a very careful reading of the paper and their comments.

REFERENCES

- 1. G. AALIPOUR, S. AKBARI, P. J. CAMERON, R. NIKANDISH and F. SHAVEISI: On the structure of the power graph and the enhanced power graph of a group. Electron. J. Comb. 24 (2017), 3–16.
- 2. J. ABAWAJY, A. KELAREV and M. CHOWDHURY: *Power graphs: a survey.* Electron. J. Graph Theory Appl. (EJGTA) 1 (2013), 125--147.
- A. ABDOLLAHI, S. AKBARI and H. R. MAIMANI : Non-commuting graph of a group. J. Algebra 298 (2006), 468–492.
- 4. A. ABDOLLAHI and H. SHAHVERDI :Non-commuting graphs of nilpotent groups. Commun. Algebra 42 (2014), 3944–3949.
- A. R. ASHRAFI, A. GHOLAMI and Z. MEHRANIAN: Automorphism group of certain power graphs of finite groups. Electron. J. Graph Theory Appl. (EJGTA) 5 (2017), 70--82.
- 6. J. BOSAK : The graphs of semigroups, Theory of Graphs and Application. Academic Press, New York, 1964.
- F. BUDDEN: Cayley graphs for some well-known groups. Math. Gaz. 69 (1985), 271–278.
- 8. P. J. CAMERON and S. GHOSH: *The power graph of a finite group*. Discrete Math. **311** (2011), 1220–1222.
- 9. P. J. CAMERON: The power graph of a finite group II. J. Group Theory, 13 (2010), 779–783.
- 10. P. J. CAMERON: Permutation Groups. Cambridge Univ. Press, Cambridge, 1999.
- I. CHAKRABARTY, S. GHOSH and M. K. SEN: Undirected power graphs of semigroups. Semigroup Forum 78 (2009), 410–426.
- 12. J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER and R. A. WIL-SON: Atlas of finite simple groups, Maximal subgroups and ordinary characters for simple groups. Oxford University Press, Eynsham, 1985.
- B. ZELINKA: Intersection graphs of finite Abelian groups. Czech. Math. J. 25 (1975), 171–174.
- 14. M. R. DARAFSHEH: Groups with the same non-commuting graph. Discrete Applied Math. 157 (2009), 833–837.
- M. R. DARAFSHEH and N. S. POURSALAVATI: On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups. Sut J. Math. 37 (2001), 1–17.
- A. DOOSTABADI, A. ERFANIAN and A. JAFARZADEH: Some results on the power graph of groups. In: The Extended Abstracts of the 44th Annual Iranian Mathematics Conference, Ferdowsi University of Mashhad, Iran, 2013, pp. 27–30.

- 17. M. FENG, X. MA and K. WANG: The full automorphism group of the power (di)graph of a finite group. European J. Combin. 52 (2016), 197–206.
- R. FRUCHT: On the groups of repeated graphs. Bull. Amer. Math. Soc. 55 (1949), 418–420.
- 19. A. HAMZEH and A. R. ASHRAFI: Automorphism groups of supergraphs of the power graph of a finite group. Eur. J. Comb. **60** (2017), 82–88.
- A. HAMZEH and A. R. ASHRAFI: The order supergraph of the power graph of a finite group. Turk. J. Math. 42 (2018), 1978–1989.
- G. JAMES and M. LIEBECK: Representations and Characters of Groups. 2nd ed., Cambridge University Press, New York, 2001.
- J. A. GALLIAN: Contemporary Abstract Algebra. Narosa Publishing House, London, 1999.
- A. V. KELAREV and S. J. QUINN: Directed graph and combinatorial properties of semigroups. J. Algebra 251 (2002), 16–26.
- A. V. KELAREV and S. J. QUINN: A combinatorial property and power graphs of groups. The Vienna Conference, Contrib. General Algebra. 12 (2000), 229–235.
- 25. A. V. KELAREV, S. J. QUINN and R. SMOLIKOVA: *Power graphs and semigroups of matrices*. Bull. Austral. Math. Soc. **63** (2001), 341–344.
- A. V. KELAREV and S. J. QUINN: A combinatorial property and power graphs of semigroups. Comment. Math. Univ. Carolinae. 45 (2004), 1–7.
- 27. A. V. KELAREV: Graph Algebras and Automata. Marcel Dekker, New York, 2003.
- A. V. KELAREV: Ring Constructions and Applications. World Scientific, River Edge, NJ, 2002.
- 29. A. V. KELAREV, J. RYAN and J. YEARWOOD: Cayley graphs as for data mining: The infuence of asymmetries. Discrete Mathematics. **309** (2009), 5360–5369.
- 30. Z. MEHRANIAN, A. GHOLAMI and A. R. ASHRAFI: A note on the power graph of a finite group. Int. J. Group Theory 5 (2016), 1–10.
- 31. M. MIRZARGAR and A. R. ASHRAFI: Some distance-based topological indices of the non-commuting graph. Hacet. J. Math. Stat. 41 (2012), 515–526.
- 32. M. MIRZARGAR, A. R. ASHRAFI and M. J. NADJAFI-ARANI: On the power graph of a finite group. Filomat **26** (2012), 1201–1208.
- 33. M. MIRZARGAR, P. P. PACH and A. R. ASHRAFI: The automorphism graph of commuting graph of a finite group. Bull. Korean Math. Soc. **51** (2014), 1145–1153.
- 34. M. MIRZARGAR, P. P. PACH and A. R. ASHRAFI: *Remarks On Commuting Graph of a Finite Group.* Electron. Notes Discrete Math. 45 (2014), 103–106.
- A. R. MOGHAADDAMFAR: About noncommuting graphs, Siberian Math. J. 47 (2006), 911–914.
- B. H. NEUMANN, A problem of Paul Erdos on groups. J. Aust. Math. Soc. Ser. 21 (1976), 467–472.
- G. R. POURGHOLI and H. YOUSEFI-AZARI: On the 2-connected power graphs of finite groups. Australiasian J. Combinatorics 62 (2015), 1–7.
- D. M. ROCKE: p-groups with abelian centralizers. Proc. London Math. Soc. 30 (1975), 55–75.

- H. E. ROSE: A Course on Finite Groups. Cambridge University press, Cambridge, 1978.
- 40. D. WITTE, G. LETZTER and J. A. GALLIAN: On Hamiltonian circuits in Cartesian products of Cayley digraphs. Discrete Math. 43 (1983), 297–307.

Mahsa Mirzargar Faculty of Science Mahallat institute of higher education Mahallat, I. R. IRAN m.mirzargar@gmail.com