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Ser. Math. Inform. Vol. 34, No 4 (2019), 729–743

https://doi.org/10.22190/FUMI1904729M

A SURVEY ON THE AUTOMORPHISM GROUPS OF THE

COMMUTING GRAPHS AND POWER GRAPHS

Mahsa Mirzargar
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Abstract. Let G be a finite group. The power graph P (G) of a group G is the graph
whose vertex set is the set of group elements where two elements are adjacent if one is
a power of the other. The commuting graph ∆(G) of a group G, is the graph whose
vertices are the group elements, two of them are joined if they commute. When the
vertex set is G \ Z(G), this graph is denoted by Γ(G). Since the results based on the
automorphism groups of these kinds of graphs are so sporadic, in this paper, we give
a survey of all results on the automorphism groups of power graphs and commuting
graphs obtained in the literature.
Keywords. Finite group; graph; vertex set; commuting graph; automorphism groups.

1. Introduction

There are many connections between graphs and groups. Generating graphs from
semigroups and groups has a long history. In 1964, Bosak [6] studied a certain
graph over semigroups. In [13], Zelinka studied the intersection graphs of nontrivial
subgroups of finite Abelian groups. The well-known study of a directed graphs de-
fined on the elements of a group is the Cayley digraph [7, 22, 40]. The investigation
of graphs like these is very important, because they have valuable and numerous
applications presented, for example, in the books [27], [28] and [29]. The directed
power graph of a group was introduced by Kelarev and Quinn [24]. The definition
was formulated so that it applied to semigroups as well. Accordingly, the power
graphs of semigroups were first considered in [25], [23] and [26]. It is also explained
in the survey [2] that the definition given in [24] covers all undirected graphs as
well. This means that the undirected power graphs were also defined in [24] (see [2]
for more detailed explanations). All of these papers used only the brief term ’power
graph’, even though they covered both directed and undirected power graphs. Ke-
larve and Quinn [23] defined another interesting classes of directed graphs, namely,
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the divisibility graphs of semigroups. Let S be a semigroup, the divisibility graph,
Div(S), of a semigroup S is a directed graph with vertex set S and there is an arc
from u to v if and only if u 6= v and u|v, i.e., the ideal generated by v contains u.

On the other hand, the power graph,
−→
P (S), of a semigroup S is a directed graph

in which the set of vertices is again S and for a, b ∈ S there is an arc from a to b if
and only if a 6= b and b = am for some positive integer m.
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Figure 1. The directed power graph of the dihedral group D8.

The undirected power graph P (S) was also considered by Chakrabarty, Ghosh and
Sen in [11]. Recall that P (S) has vertex set S and two vertices a, b ∈ S are adjacent
if and only if a 6= b and < a >⊆< b > or < b >⊆< a > (which is equivalent to
saying a 6= b and am = b or bm = a for some positive integer m). As a consequence,
they proved that P (G) is connected for any finite group G and P (G) is complete if
and only if G is a cyclic group of order 1 or pm [11].
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Figure 2. The undirected power graph of the dihedral group D8.

The undirected power graphs became the main focus of study in [11] and in the
subsequent papers by P. J. Cameron et al. [8, 9], which introduced the use of the
brief term ‘power graph’ in the second meaning of an undirected power graph. For a

group G, the digraph
−→
P (G) was considered in [37] as the main subject of study. The

interested readers can be consulted [2, 32, 1] for more information about the power
graphs. In this paper, we are also interested in the well-known commuting graphs
and their automorphism groups. Let G be a non-abelian group and let Z(G) be the
center of G. Associate a graph Γ(G) with G as follows: Take G\Z(G) as the vertices
of Γ(G) and join two distinct vertices x and y, whenever xy = yx. The complement
of the Γ(G) is said to be the noncommuting graph. The noncommuting graph was
first considered by Paul Erdos, when he posed the following problem in 1975 [36]:
Let G be a group whose noncommuting graph has no infinite complete subgraph.
Is it true that there is a finite bound on the cardinalities of complete subgraphs
of the noncommuting graph of G? B. H. Neumann [36] answered positively Erdos’
question. We refer the readers to [3, 4, 14, 35, 31] for more details about the
noncommuting graph. In [1], authors related the power graph to the commuting
graph and characterize when they are equal for finite groups. A new graph pops
up while considering these graphs, a graph whose vertex set consists of all group
elements, in which two vertices x and y are adjacent if they generate a cyclic group.
They called this graph as the enhanced power graph of G. The enhanced power
graph contains the power graph and is a subgraph of the commuting graph. We
consider the commuting graph with vertex set G and denoted it by ∆(G).
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Figure 3. The commuting graph ∆(D8).
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2. Preliminaries and background information

An action of a group G on a set X is the choice, for each g ∈ G of a permutation
πg : X → X such that the following two conditions hold:

1. πe is the identity: πe(x) = x for each x ∈ X ,

2. for every g1, g2 in G, πg1 ◦ πg2 = πg1g2 .

For example, any group G acts on itself (X = G) by left multiplication functions.
A group action of G on X is said to be faithful if different elements of G act on X
in different ways: when g1 6= g2 in G, there is an x ∈ X such that g1∆x 6= g2∆x.
For any graph Γ, we denote the sets of the vertices and the edges of Γ by V (Γ)
and E(Γ), respectively. Suppose v ∈ V (Γ) and V1(Γ) ⊆ V (Γ), then N(v) is the
set of neighbours of v and 〈V1(Γ)〉 is the subgraph of Γ induced by V1(Γ). The
closed neighbourhood of a vertex x, denoted by N [x], is the set of its neighbours
and itself. The complement of Γ is the graph Γ̄ on the same vertices such that
two vertices of Γ̄ are adjacent if and only if they are not adjacent in Γ. For two
graphs with disjoint vertex sets V1 and V2 their union is the graph H in which
V (H) = V1 ∪ V2 and E(H) = E1 ∪ E2. Define nH to be the union of n disjoint
copies of G. The automorphism group of a graph Γ is that set of all permutations
on V (Γ) that fix as a set the edges E(Γ). The set of all automorphisms of a
graph Γ forms a permutation group, Aut(Γ), acting on the object set V (Γ). See
[10] for the terminology and main results of permutation group theory. Let A
and B be permutation groups acting on object sets X and Y , respectively. Define
B ≀A = {(a, f) | a ∈ A, f : X → B}, (a, f)(x, y) = (ax, bxy) where f(x) = bx. B ≀ A
is said to be wreath product. It acts on X × Y as follows: for each a ∈ A and any
sequence b1, b2, · · · , bn (where n = |X |) in B, there is a unique permutation in A ≀B
written (a; b1, · · · , bn), and (a; b1, · · · , bn)(xi, yi) = (axi, biyi). Suppose Sn denotes
the symmetric group on {1, 2, · · · , n}, ϕ is the Euler’s totient function . In what
follows, we describe some important results relating the automorphism groups of
a graph which are crucial in this paper. Frucht [18] described if Γ is a connected
graph, then Aut(nΓ) ∼= (Aut(Γ)) ≀ Sn, if no component of Γ1 is isomorphic with a
component of Γ2, then Aut(Γ1 ∪ Γ2) ∼= Aut(Γ1) × Aut(Γ2) and applying the last
two theorems we have the result: Let Γ = n1Γ1 ∪ n2Γ2 ∪ · · · ∪nrΓr, where ni is the
number of components of Γ isomorphic to Γi, then

Aut(Γ) ∼= ((Aut(Γ1)) ≀ Sn1
)× ((Aut(Γ2)) ≀ Sn2

)× · · · × ((Aut(Γr)) ≀ Snr
).

An operation · on the set S is associative if it satisfies the following associative
law: x · (y · z) = (x · y) · z for all x, y, z ∈ S. A semigroup is a set S equipped
with an associative binary operation ·. The set of the orders of all elements of G
is denoted by πe(G) and is said to be the spectrum of G. For n ∈ N , the cyclic
group of order n can be defined as the group Zn = Z/nZ of residues modulo n, the
set < g >= {gn | n ∈ Z} is the cyclic group generated by g in G. For a prime p,
a group G is said to be an elementary abelian p-group if G is finite, abelian and
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every nontrivial element of G has order p. A group G is an AC-group, whenever
the centralizers of non-central elements are abelian. The dihedral group D2n is an
example of an AC-group. The group G is said to be an EPPO-group, if all elements
of G have prime power order.

3. Automorphism groups of power graphs

The first result about the automorphism groups of power graphs was obtained by
P. Cameron in [8], where he explained that when the automorphism group and its
graph are equal. P. Cameron proved the only finite group G for which Aut(G) =
Aut(P (G)) is the Klein group Z2 × Z2.

In 2013, Doostabadi, Erfanian and Jafarzadeh asserted that the full automor-
phism group of the power graph of the cyclic group Zn is isomorphic to the direct
product of some symmetry groups.

Conjecture 3.1. [16] For every positive integer n,

Aut(P (Zn)) ∼= Sϕ(n)+1 ×
∏

d∈D(n)\{1,n}

Sϕ(d)

where D(n) is the set of positive divisors of n, and ϕ is the Euler’s totient function.

In fact, if n is a prime power, then P (Zn) is a complete graph by [11] which
implies that Aut(P (Zn) ∼= Sn. Hence, the conjecture does not hold if n = pm for
any prime p and integer m > 2. In [17], proved that this conjecture holds for the
remaining case. Feng, Ma and Wang [17], describe the full automorphism group of
the power (di)graph of an arbitrary finite group. As an application, this conjecture
is valid if n is not a prime power. Denote by C(G) the set of all cyclic subgroups of
G. For C ∈ C(G), let [C] denote the set of all generators of C. Write

C(G) = {C1, · · ·Ck} and [Ci] = {[Ci]1, · · · [Ci]si}.

Define P(G) as the set of permutations σ on C(G) preserving order, inclusion and
noninclusion, i.e., |Cσ

i | = |Ci| for each i ∈ {1, · · · , k} and Ci ⊆ Cj if and only if
Cσ

i ⊆ Cσ
j . Note that P(G) is a permutation group on C(G). This group induces

the faithful action on the set G:

(3.1) G×P(G) −→ G, ([Ci]j , σ) 7−→ [Cσ
i ]j .

For Ω ⊆ G, let SΩ denote the symmetric group on Ω. Since G is the disjoint
union of [C1], · · · , [Ck], we get the faithful group action on the set G:

(3.2) G×

k∏

i=1

S[Ci] −→ G, ([Ci]j , (ξ1, · · · , ξk)) 7−→ ([Ci]j)
ξi .

By using the above-mentioned symbols we have:
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Theorem 3.1. [17] Let G be a finite group. Then

Aut(
−→
P (G)) = (

k∏

i=1

S[Ci])×P(G),

where P(G) and
∏k

i=1 S[Ci] act on G as in (3.1) and (3.2), respectively.

In the power graph P (G), for x, y ∈ G, define x ≡ y if N [x] = N [y]. Observe that
≡ is an equivalence relation. Let x̄ denote the equivalence class containing x. Write

U(G) = {x̄|x ∈ G} = {ū1, · · · , ūl}.

Since G is the disjoint union of u1, · · · , ul, the following is a faithful group action
on the set G:

(3.3) G×

l∏

i=1

Sūi
−→ G, (x, (τ1, τ2, · · · , τl)) 7−→ xτi , where x ∈ ūi.

Similar to the last theorem, for the automorphism groups of undirected power
graphs we have:

Theorem 3.2. [17] Let G be a finite group. Then

Aut(P (G)) = (

l∏

i=1

Sūi) ×P(G),

where P(G) and
∏l

i=1 Sūi
act on G as in (3.1) and (3.3), respectively.

By combining Theorems 3.1 and 3.2, the authors in [17], obtained that Aut(P (G)) =

Aut(
−→
P (G)) if and only if x = [x] for each x ∈ G. Indeed, this result demonstrates

relationship between power graphs and directed power graphs.

A graph Γ is said to be a subgraph of another graph ∆ (or ∆ is a supergraph of
Γ), if V (Γ) ⊂ V (∆) and E(Γ) ⊂ E(∆). Hamzeh and Ashrafi [19] defined the main
supergraph S(G) of P (G) with the vertex set G and two elements x, y ∈ G are
adjacent if and only if o(x)|o(y) or o(y)|o(x) and proved that there is not a group
G, such that Aut(S(G)) = Aut(G). In what follows, Ωai

(G) = |{y|o(y) = ai}|.
Authors in [19] also define the graph ∆ with vertex set V (δ) = πe(G) and two
vertices ai and aj are adjacent if and only if ai|aj or aj |ai.

Theorem 3.3. [19] Let G be a finite group with spectrum πe(G) = {a1, · · · , ak}
and choose a representative set {t1, t2, · · · , tk}, where for each i, 1 ≤ i ≤ k, ti ∈
KΩai

(G). Then,

1. If deg(ti)’s are distinct then Aut(S(G)) = SΩa1
(G)× · · · × SΩak

(G).
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2. If deg(ti1) = · · · = deg(tir ), any two distinct vertices of KΩai1

(G), · · · ,KΩair

(G)

are adjacent and N∆[ai1 ] = · · · = N∆[air ] then Aut(S(G)) has a subgroup iso-
morphic to SΩai1

(G)+···+Ωair
(G).

3. If deg(ti1) = · · · = deg(tir ), all vertices of KΩai1

(G), · · · ,KΩair

(G) are adja-

cent and N∆[ail ]’s are distinct then Aut(S(G)) has a subgroup isomorphic to
SΩai1

(G)× · · · × SΩair

(G).

4. If deg(ti1) = · · · = deg(tir ), N∆[ai1 ] = · · · = N∆[air ] and for each two
m,n, 1 ≤ m,n ≤ r, KΩaim

(G) and KΩain

(G) are disjoint then Aut(S(G))

has a subgroup isomorphic to SΩai1

(G) ≀ Sr .

5. If deg(ti1) = · · · = deg(tir),N∆[ail ]’s are distinct and for each m,n, 1 ≤
m,n ≤ r, KΩaim

(G) and KΩain

(G) are disjoint then Aut(S(G)) has a sub-

group isomorphic to SΩai1

(G)× · · · × SΩair

(G).

6. Aut(S(G)) = A1 × · · · × Aq, where Ai, 1 ≤ i ≤ q, are subgroups appeared in
Cases ( 2–5).

In [[20], Theorem 2.8], it is proved that if G is an EPPO-group of order pn1

1 · · · pnk

k

and Vi = {1 6= g ∈ G | o(g)|pnii } then S(G) = K1 + (
⋃k

i=1 K|V i|). The authors
applied the structure of S(G) to determine its automorphism.

Theorem 3.4. [19] Let G be a finite group and e1, · · · , et are distinct values of
|V1|, · · · , |Vk|. Define Bi = |{|Vj | | |Vj | = ei}|. Then,

Aut(S(G)) = (S|V1| ≀ SB1
)× · · · × (S|Vk| ≀ SBk

).

Suppose G is a finite group and C(G) = {C1, · · · , Ck} is the set of all cyclic sub-
groups of G. Define LG to be the graph with vertex set C(G) in which two cyclic
subgroups Ci and Cj are adjacent if one is contained in the other or there is a cyclic
subgroup Ck such that Ci ⊆ Ck and Cj ⊆ Ck. It is clear that the subgraphs of P (G)
induced by a cyclic subgroup are complete. So, P (G) = WG[Kb1 ,Kb2 , · · · ,Kbk ] with
bi = ϕ(|Ci|).

Theorem 3.5. [19] Let G be a finite group with C(G) = {C1, · · · , Ck} and choose
a representative set {t1, t2, · · · , tk}, where for each i, 1 ≤ i ≤ k, ti ∈ Kbi . Then,

1. If deg(ti)’s are distinct then Aut(P (G)) = Sb1 × · · · × Sbk .

2. If deg(ti1) = · · · = deg(tir ), any two distinct vertices of Kbi1
, · · · ,Kbir

are
adjacent and NWG

[Ci1 ] = · · · = NWG
[Cir ] then Aut(P (G)) has a subgroup

isomorphic to Sbai1
+···+bair

.
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3. If deg(ti1) = · · · = deg(tir ), all vertices of Kbi1
, · · · ,Kbir

are adjacent and
NWG

[Cil ]’s are distinct then Aut(P (G)) has a subgroup isomorphic to Sbi1
×

· · · × Sbir
.

4. If deg(ti1) = · · · = deg(tir ), NWG
[Ci1 ] = · · · = NWG

[Cir ] and for each two
m,n, 1 ≤ m,n ≤ r, Kbim

and Kbin
are disjoint then Aut(P (G)) has a sub-

group isomorphic to Sbi1
≀ Sr .

5. If deg(ti1) = · · · = deg(tir ), NWG
[Cil ]’s are distinct and for each m,n, 1 ≤

m,n ≤ r, Kbim
and Kbin

are disjoint then Aut(P (G)) has a subgroup isomor-
phic to Sbi1

× · · · × Sbir
.

6. Aut(P (G)) = A1 × · · · × Aq, where Ai, 1 ≤ i ≤ q, are subgroups appeared in
Cases ( 2–5).

3.1. Examples

In this section, we present Aut(P (G)) and Aut(
−→
P (G)) for some families of finite

groups such as Zn, Z
p
n, D2n, Q4n, U6n, V8n and so on. These results obtained in

several papers in different ways. In [5], the authors used the graph structure from
[30] and computed the automorphism groups of P (G) for the above groups. In [17],
the authors by using Theorem 3.1 and Theorem 3.2, computed the automorphism

groups of P (G) and
−→
P (G) for these groups. In [19], authors obtained these results

from Theorem 3.3.

Example 3.1. [17] If n be a positive integer then,

Aut(
−→
P (Zn)) ∼=

∏

d∈D(n)

Sϕ(d),

Aut(P (Zn)) ∼=

{

Sn n is a prime power

Sϕ(n)+1 ×
∏

d∈D(n)\{1,n} Sϕ(d) otherwise
,

and if n ≥ 2 then,

Aut(P (Zn
p )) = Aut(

−→
P (Zn

p ) ∼= Sp−1 ≀ Sm,

where m = pn−1
p−1

and Zn
p denote the elementary abelian p−group.

In the [21, 15], the dihedral group D2n, semi-dihedral group SD2n , generalized
quaternion group of Q4n, semidihedral groups SD8n are defined by the following
presentations:

D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉,

SD2n = 〈a, b | a2
n

= b2 = 1, b−1ab = a−1〉,

Q4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,

U6n = 〈a, b | a2n = b3 = 1, a−1ba = b−1〉,

V8n = 〈a, b | a2n = b4 = 1, ba = a−1b−1, b−1a = a−1b〉.

Now, we are ready to state next example.
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Example 3.2. [17] For n ≥ 3,

Aut(
−→
P (D2n)) ∼=

∏

d∈D(n)

Sϕ(d) × Sn,

Aut(P (D2n)) ∼=

{

Sn−1 × Sn, n is a prime power

Sn ×
∏

d∈D(n) Sϕ(d) otherwise
,

and let n ≥ 3 then,

Aut(
−→
P (Q4n)) ∼=

∏

d∈D(2n)

Sϕ(d) × (S2 ≀ Sn),

Aut(P (Q4n)) ∼=

{

S2 × S2n−2 × (S2 ≀ Sn), n is a power of 2
∏

d∈D(2n) Sϕ(d) × (S2 ≀ Sn) otherwise
.

Example 3.3. [5] If k is nonnegative integer and satisfies n = 3kt for some positive
integer t such that 3 6 |t then,

Aut(P (U6n)) ∼=















∏

d|3n Sϕ(d) ×
∏

d|2n,d 6|n Sϕ(d) ≀ S3 k = 0
∏

d|2n,d 6|n Sϕ(d) ≀ S3 ×
∏

d|n Sϕ(d) ×
∏

d|n,d 6|t Sϕ(d) ≀ S3 k = 1
∏

d|2n,d 6|n Sϕ(d) ≀ S3 ×
∏

d|n Sϕ(d) ×
∏

d|3t,d 6|t Sϕ(d) ≀ S3

×
∏

d|n,d 6|3t Sϕ(d) ≀ S2 k ≥ 2

,

if n = 2kt for a nonnegative k and some positive odd integer t then,

Aut(P (V8n)) ∼=



















S2n × S2 ≀ Sn ×
∏

d|2n,d 6|n Sϕ(d) ≀ S2 ×
∏

d|2n Sϕ(d) k = 0

S2n+1 × S2 ≀ Sn ×
∏k−1

l=1 S2
2l × S2k ≀ S2 t = 1, k ≥ 1

S2n × S2 ≀ Sn ×
∏

d|t S
4
ϕ(d) ×

∏k

s=2

∏

d|2st,d 6|2s−1t
S2
ϕ(d)

×
∏

d|2k+1t,d 6|2kt Sϕ(d) ≀ S2 t > 1, k ≥ 1

,

also,

Aut(P (SD8n)) ∼=

{

S4n−2 × S2n × (S2 ≀ Sn), n is a power of 2
∏

d|4n Sϕ(d) × S2n × (S2 ≀ Sn) otherwise
.

The smallest sporadic group is the first Mathieu groupM11, it has order 7920. There
are many presentations for the group M11, we give two of its known presentation,
[39].

M11
∼=< a, b, c|a11 = b5 = c4 − (ac)3 = 1, b4ab = a4, c3bc = b2 >,

∼=<a, b, c, d|a2= b2= c2= d2= (ab)5= (bc)3 = (bd)4= (cd)3= (abdbd)3 = 1> .

The paper by Around (1960) increased the interest to finite simple groups, as Janko
in Australia found (1965) the first new sporadic group J1 a century later after
Mathieu’s. It turns out that J1 had order 175560. A presentation for J1 in terms
of its standard generators is given below [12]:

J1 ∼=< a, b|a2 = b3 = (ab)7 = (ab(abab−1)3)5 = (ab(abab−1)6abab(ab−1)2)2 = 1 > .

The automorphism groups of M11 and J1 are determined as follows:
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Example 3.4. [5] Let M11 be the first Mathieu group and J1 be the first Janko group,
then,

Aut(P (M11)) ∼= (S10 ≀ S144)× (S4 ≀ S396)× (S2 ≀ S55)× ((S6 ≀ S3)× (S2 ≀ S4)× S2) ≀ S165,

Aut(P (J1)) ∼= (S10 ≀ S596)× (S6 ≀ S4180)× (S18 ≀ S1540)

× ((S2 × S8 × S4 × (S4 ≀ S3)× (S2 ≀ S5)) ≀ S2) ≀ S1463.

Moreover, in [30] the automorphism groups of P (Zpq), P (Zpqr) and P (Zp2q2) are
calculated as follows:

Aut(P (Zpq)) ∼= Sϕ(pq)+1 × Sp−1 × Sq−1,

Aut(P (Zpqr)) ∼= Sϕ(pqr) × Sp−1 × Sq−1 × Sr−1 × Sϕ(pq) × Sϕ(pr) × Sϕ(qr),

Aut(P (Zp2q2)) ∼= Sϕ(p2q2)+1 × Sp−1 × Sϕ(p2) × Sq−1 × Sϕ(q2) × Sϕ(pq) × Sϕ(pq2) × Sϕ(p2q).

As we mentioned in above Theorem 3.4 is playing a main role in finding auto-
morphism group of power graphs. In [19], the authors obtained the following results
from Theorem 3.3.

Example 3.5. [19] If n is odd, then

Aut(S(D2n)) =

{

Sn−1 × Sn n is a prime power

Sn ×
∏

d|n Sϕ(d) otherwise
,

and if n is even then

Aut(S(D2n)) =

{

S2n n is a power of 2
Sϕ(n)+1 × Sn+1

∏

{1,n,2}6=d|n Sϕ(d) otherwise
,

if n is odd, then

Aut(S(T4n)) = S2n ×
∏

d|2n

Sϕ(d),

and if n is even then

Aut(S(T4n)) =

{

S4n n is a power of 2
Sϕ(2n)+1 × S2n+2

∏

{1,2n,4}6=d|2n Sϕ(d) otherwise
,

for arbitrary n,

Aut(S(SD8n)) =

{

S8n n is a power of 2
Sϕ(4n)+1 × S2n+1 × S2n+2

∏

{1,4n,2,4}6=d|4n Sϕ(d) otherwise
,

if n = 2k then Aut(S(V8n)) ∼= S8n, and if n is an odd prime then Aut(S(V8n)) =

S2n+3 × S2n × S3ϕ(n) ×
∏

{1,2n,2}6=d|2n Sϕ(d).
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4. Automorphism groups of commuting graphs

The commuting graphs ∆(G) and Γ(G) of a group G are defined in the introduction.
The following theorem established the relation between Aut(G), Aut(∆(G)) and
Aut(Γ(G)).

Theorem 4.1. [33] Let G be a finite group, then

1. Aut(G) = Aut(∆(G)) if and only if |G| = 1.

2. Aut(∆(G)) ∼= Aut(Γ(G))× SZ(G).

Mirzargar, Pach and Ashrafi studied the subgroups of Aut(∆(G)) in [33, 34]. The
first subgroups are Aut(Γ(G)) and Aut(G), then they added some automorphisms
of graph to Aut(G) and constructed bigger subgroups. Define two permutations
Φx,y, φ : G → G as follows: Φx,y fixed each element a ∈ G \ {x, y} and maps x into
y and vice-versa; and, the permutation φ is defined by x → x−1 for each element
x ∈ G. They also defined Aut∗(G) = 〈Aut(G), φ〉 and considered to the equality of
the subgroups and the main group.

Theorem 4.2. [33] Aut∗(G) = Aut(∆(G)) if and only if G ∼= S3.

Let the cosets Z(G)x1, Z(G)x2, · · · , Z(G)xm−1 of the group G/Z(G) and define
a new graph ∆u(G) with V (∆u(G)) = {x0 = 1, x1, · · · , xm−1} and E(∆u(G)) =
{xixj |xixj = xjxi, 0 ≤ i < j ≤ m − 1}. Notice when |Z(G)| = 1 then ∆(G) ∼=
∆u(G). It is clear that every two elements in one of these cosets commute. Hence
we have a complete graph in any of these cosets. On the other hand, if there exists
xi ∈ Z(G)xi, xj ∈ Z(G)xj satisfying xixj = xjxi, then for every yi ∈ Z(G)xi, yj ∈
Z(G)xj we have yiyj = yjyi. Finally, the set of all φ ∈ Aut(∆(G)) such that for
a, b ∈ G if ab−1 ∈ Z(G), then φ(a)φ(b)−1 ∈ Z(G) is denoted by T . These notations
are applied in [33] to prove two following theorems.

Theorem 4.3. [33] Let G be a group. Then,

1. Aut(∆u(G)) is a subgroup of Aut(∆(G)). Moreover, Aut(∆u(G)) = Aut(∆(G))
if and only if |Z(G)| = 1.

2. If G is not centerless then T is a subgroup of Aut(∆(G)), and Aut(∆(G)) = T
if and only if for each pair a, b of elements of G with CG(a) = CG(b), we have
ab−1 ∈ Z(G).

Theorem 4.4. [33] Let |Z(G)| ≥ 2, where G be a nonabelian group. If T =
Aut(∆(G)) then G/Z(G) is an elementary abelian 2−group.
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For a finite group G define a labelled graph ∆v(G) as follows. For a, b ∈ G let
a ∼ b if CG(a) = CG(b). Clearly, ∼ is an equivalence relation, the equivalence class
of a ∈ G is A(a) = {x|CG(x) = CG(a)}. Let us denote the equivalence classes by
A1, . . . , Ak, these are the vertices of ∆v(G). Two vertices Ai and Aj are connected
if and only if aiaj = ajai, for some ai ∈ Ai, aj ∈ Aj . At first, we note that if there
exists ai ∈ Ai, aj ∈ Aj satisfying aiaj = ajai, then for every bi ∈ Ai, bj ∈ Aj we
have aj ∈ CG(ai) = CG(bi). So, bi ∈ CG(aj) = CG(bj) implies that bibj = bjbi.
Each equivalence class is the union of some sets of the form tZ(G), hence there exists
a positive integers ci such that |Ai| = ci|Z(G)|. Let α(Ai) = ci be the label of the
vertex Ai in ∆v(G). One can see φ : V (∆v(G)) → V (∆v(G)) is an automorphism
of the labelled graph ∆v(G) if φ is a bijection, it preserves the edges (and the
non-edges) and it preserves the labels. The automorphism group formed by these
automorphisms is denoted by Aut(∆v(G)). Define SAi

= {fσ | σ ∈ S|Ai|, ∀x ∈
Ai, fσ(x) = σ(x), ∀x /∈ Ai, fσ(x) = x}, 1 ≤ i ≤ k. Clearly, SAi

is a subgroup of
Aut(∆(G)). The connection between Aut(∆(G)) and Aut(∆v(G)) is described by
the following theorem:

Theorem 4.5. [33] There is a subgroup A of Aut(∆(G)) such that A ∼= Aut(∆v(G))
and Aut(∆(G)) = 〈SA1

, · · · , SAk
〉 ×A.

In [38], Rocke proved that the following are equivalent:

1. G has abelian centralizers;

2. If xy = yx, then CG(x) = CG(y) whenever x, y 6∈ Z(G);

3. If xy = yx and xz = zx, then yz = zy whenever x 6∈ Z(G);

4. If U and B are subgroups of G and Z(G) < CG(U) ≤ CG(B) < G then
CG(U) = CG(B).

Therefore, the intersection of two proper element centralizers of an AC-group is the
center of G. If G is an AC-group, then ∆(G) is a union of some complete graphs
with all vertices adjacent to the elements of Z(G). So, ∆(G) is n1(CG(x1)\Z(G))∪
n2(CG(x2) \ Z(G)) ∪ · · · ∪ (nrCG(xr) \ Z(G)) and also every element of Z(G) is
adjacent to all elements of G, such that for each i, 1 ≤ i ≤ r, we have ni isomorphic
components with complete graph of size |CG(xi)\Z(G)|. In [33], the authors proved
that if G is an AC-group with the above notations then,

Aut(∆(G)) ∼= ((S|CG(x1)|−|Z(G)|) ≀ Sn1
)× ((S|CG(x2)|−|Z(G)|) ≀ Sn2

)× · · ·

× ((S|CG(xn)|−|Z(G)|) ≀ Snr
)× SZ(G).

Finally, from [33], |Aut(∆(G))| can not be a prime power or a square-free num-
ber. Moreover, |Aut(∆(G))| = 1 if and only if G is trivial, Aut(Γ(G)) is abelian
if and only if G is a group of order 1 or 2. Also if |G| > 2 then Aut(∆(G)) is a
nonabelian group.
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