24 research outputs found

    A platform independent distributed IPC mechanism in support of programming heterogeneous distributed systems

    Get PDF
    Abstract Interprocess communication (IPC) is a well-known technique commonly used by programs running on homogeneous distributed systems. However, it cannot be used readily and efficiently by programs running on heterogeneous distributed systems. This is because it must be given a uniform interface either by a set of middleware or more efficiently properly ported to the kernel of all varieties of open source and closed source proprietary operating systems running on heterogeneous nodes of distributed systems. This is particularly problematic to achieve when the kernel code of closed source operating systems are inaccessible to third parties. We propose an alternative nonproprietary approach to enable the use of IPC in heterogeneous distributed systems by wrapping IPC calls from the kernel of closed source operating systems, and converting them into equivalent IPC calls that are efficiently implemented inside the kernel code of open source operating systems. To show the superiority of our approach, we developed a wrapper for converting MS-Windows IPC calls into equivalent Linux IPC calls and benched our approach on a hybrid computer cluster running both types of operating systems

    Damage detection via shortest-path network sampling

    Get PDF
    Large networked systems are constantly exposed to local damages and failures that can alter their functionality. The knowledge of the structure of these systems is, however, often derived through sampling strategies whose effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged, not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the damage detection and the number of probes used to sample the network. We test and measure the efficiency of our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the damage precisely

    A Review of the Role of the Partial Pressure of Carbon Dioxide in Mechanically Loaded Tissues: The Canary in the Cage Singing in Tune with the Pressure Ulcer Mantra

    No full text
    Pressure ulcers (PUs) can occur in any situations where people are subjected to non-uniform distribution of pressure over a prolonged period. They can have devastating effects on the patients’ well-being and in extreme conditions can prove fatal. In addition to traditional wisdom implicating mechanically induced ischaemia, there is strong evidence that other mechanisms play a role in the cascade of events which can initiate the PU damage process at the cellular level. Some of these refer to a metabolic imbalance with compromised delivery of nutrients and accumulation of waste products in the local environment of the cells. The approach of much research has focused on the measure of oxygen in compressed tissues as a means of predicting early damage. However, the present review adopting a hierarchical approach, using length scales ranging from cells through to human models, has revealed compelling evidence which highlights the impor- tance of carbon dioxide levels and associated concentration of other metabolites, such as lactate and purines. The temporal profiles of these metabolites have been monitored in the various models subjected to periods of mechanical- induced loading where the localized cells have converted to anaerobic metabolism. They reveal threshold levels of carbon dioxide which might be indicative of early tissue damage during both mechanical-induced ischaemia and subsequent reperfusion and an appropriate sensor could be used in a similar manner to the long-standing ‘‘canary in a cage’’ method to detect toxic gasses in enclosed mines

    A Review of the Role of the Partial Pressure of Carbon Dioxide in Mechanically Loaded Tissues: The Canary in the Cage Singing in Tune with the Pressure Ulcer Mantra

    No full text
    Pressure ulcers (PUs) can occur in any situations where people are subjected to non-uniform distribution of pressure over a prolonged period. They can have devastating effects on the patients’ well-being and in extreme conditions can prove fatal. In addition to traditional wisdom implicating mechanically induced ischaemia, there is strong evidence that other mechanisms play a role in the cascade of events which can initiate the PU damage process at the cellular level. Some of these refer to a metabolic imbalance with compromised delivery of nutrients and accumulation of waste products in the local environment of the cells. The approach of much research has focused on the measure of oxygen in compressed tissues as a means of predicting early damage. However, the present review adopting a hierarchical approach, using length scales ranging from cells through to human models, has revealed compelling evidence which highlights the impor- tance of carbon dioxide levels and associated concentration of other metabolites, such as lactate and purines. The temporal profiles of these metabolites have been monitored in the various models subjected to periods of mechanical- induced loading where the localized cells have converted to anaerobic metabolism. They reveal threshold levels of carbon dioxide which might be indicative of early tissue damage during both mechanical-induced ischaemia and subsequent reperfusion and an appropriate sensor could be used in a similar manner to the long-standing ‘‘canary in a cage’’ method to detect toxic gasses in enclosed mines
    corecore