21 research outputs found

    Enrichment of neural-related genes in human mesenchymal stem cells from neuroblastoma patients.

    Get PDF
    Neuroblastoma (NB) is one of the most common pediatric solid tumors and, like most human cancers, is char-acterized by a broad variety of genomic alterations. Although mesenchymal stem cells (MSCs) are known to interact with cancer cells, the relationship between MSCs and metastatic NB cancer cells in bone marrow (BM) is unknown. To obtain genetic evidence about this interaction, we isolated ΒΜ-derived MSCs from children with NB and compared their global expression patterns with MSCs obtained from normal pediatric donors, using the Agilent 44K microarrays. Significance analysis of microarray results with a false discovery rate (FDR) <5% identified 496 differentially expressed genes showing either a 2-fold upregulation or downregulation between both groups of samples. Comparison of gene ontology categories of differ-entially expressed genes revealed the upregulation of genes categorized as ‘neurological system process’, ‘cell adhesion’, ‘apoptosis’, ‘cell surface receptor linked signal transduction’, ‘intrinsic to membrane’ and ‘extracellular region’. Among the downregulated genes, several immunology-related terms were the most abundant. These findings provide preliminary genetic evidence of the interaction between MSCs and NB cancer cells in ΒΜ as well as identify relevant biological processes potentially altered in MSCs in response to NBThis study was supported by grants from the Fondo de Investigaciones Sanitarias (FIS; PI05/2217 and PI08/0029 to J.G.C.), MICINN (PLE2009-0115) and the Madrid Regional Government (S-BIO-0204-2006 and P2010/BMD-2420) in Spain. The experiments were approved by the appropriate committees.S

    Combination of Single-Photon Emission Computed Tomography and Magnetic Resonance Imaging to Track ¹¹¹In-Oxine-Labeled Human Mesenchymal Stem Cells in Neuroblastoma-Bearing Mice

    Get PDF
    Homing is an inherent, complex, multistep process performed by cells such as human bone marrow mesenchymal stem cells (hMSCs) to travel from a distant location to inflamed or damaged tissue and tumors. This ability of hMSCs has been exploited as a tumor-targeting strategy in cell-based cancer therapy. The purpose of this study was to investigate the applicability of ¹¹¹In-oxine for tracking hMSCs in vivo by combining single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). ¹¹¹In-labeled hMSCs (10⁶ cells) were infused intraperitoneally in neuroblastoma-bearing mice, whereas a control group received a dose of free ¹¹¹In-oxine. SPECT and MRI studies were performed 24 and 48 hours afterwards. Initially, the images showed similar activity in the abdomen in both controls and hMSC-injected animals. In general, abdominal activity decreases at 48 hours. hMSC-injected animals showed increased uptake in the tumor area at 48 hours, whereas the control group showed a low level of activity at 24 hours, which decreased at 48 hours. In conclusion, tracking ¹¹¹In-labeled hMSCs combining SPECT and MRI is feasible and may be transferable to clinical research. The multimodal combination is essential to ensure appropriate interpretation of the images.This work was funded in part by grants from Ministerio de Economía y Competitividad (PLE2009-0115), Red Tematica de Investigación Cooperativa en Cancer (RTICC/ISCIII; RD12/0036/0027), the Madrid Regional Government (S-BIO-0204-2006–MesenCAM and P2010/BMD-2420-CellCAM), and the Ministerio de Ciencia e Innovación (CEN-20101014 and TEC-2010-21619-C04-01).Publicad

    GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy

    Get PDF
    Natural killer group 2D (NKG2D) is a natural killer (NK) cell-activating receptor that recognizes different stress-induced ligands that are overexpressed in a variety of childhood and adult tumors. NKG2D chimeric antigen receptor (CAR) T cells have shown potent anticancer effects against different cancer types. A second-generation NKG2D CAR was generated by fusing full-length human NKG2D to 4-1BB costimulatory molecule and CD3ζ signaling domain. Patient-derived CAR T cells show limitations including inability to manufacture CAR T cells from the patients' own T cells, disease progression, and death prior to return of engineered cells. The use of allogeneic T cells for CAR therapy could be an attractive alternative, although undesirable graft vs. host reactions may occur. To avoid such adverse effects, we used CD45RA- memory T cells, a T-cell subset with less alloreactivity, as effector cells to express NKG2D CAR. In this study, we developed a protocol to obtain large-scale NKG2D CAR memory T cells for clinical use by using CliniMACS Prodigy, an automated closed system compliant with Good Manufacturing Practice (GMP) guidelines. CD45RA+ fraction was depleted from healthy donors' non-mobilized apheresis using CliniMACS CD45RA Reagent and CliniMACS Plus device. A total of 108 CD45RA- cells were cultured in TexMACS media supplemented with 100 IU/mL IL-2 and activated at day 0 with T Cell TransAct. Then, we used NKG2D-CD8TM-4-1BB-CD3ζ lentiviral vector for cell transduction (MOI = 2). NKG2D CAR T cells expanded between 10 and 13 days. Final cell products were analyzed to comply with the specifications derived from the quality and complementary controls carried out in accordance with the instructions of the Spanish Regulatory Agency of Medicines and Medical Devices (AEMPS) for the manufacture of investigational advanced therapy medicinal products (ATMPs). We performed four validations. The manufacturing protocol here described achieved large numbers of viable NKG2D CAR memory T cells with elevated levels of NKG2D CAR expression and highly cytotoxic against Jurkat and 531MII tumor target cells. CAR T cell final products met release criteria, except for one showing myc overexpression and another with viral copy number higher than five. Manufacturing of clinical-grade NKG2D CAR memory T cells using CliniMACS Prodigy is feasible and reproducible, widening clinical application of CAR T cell therapies.This study was funded in part by the National Health Service of Spain, Instituto de Salud Carlos III (ISCIII), FONDOS FEDER grant (FIS) PI18/01301, by the Unoentrecienmil Foundation and by CRIS Cancer Foundation to beat Cancer (http://criscancer.org).LF, AF, IM, and AE are granted by CRIS Cancer Foundation to beat cancer.S

    Inmunoterapia con células CAR-T en hematooncología pediátrica

    Get PDF
    Resumen A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel, ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CART en Espana, ˜ evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular, dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos.Abstract Despite being a rare disease, cancer is the first cause of mortality due to disease during the paediatric age in the developed countries. The current, great increase in new treatments, such as immunotherapy, constitutes a new clinical and regulatory paradigm. Cellular immunotherapy is one of these types of immunotherapy. In particular, the advanced therapy drugs with chimeric antigen receptors in the T-lymphocytes (CAR-T), and particularly the CART19 cells, has opened up a new scenario in the approach to haematology tumours like acute lymphoblastic leukaemia and the B-Cell lymphomas. The approval of tisagenlecleucel and axicabtagene ciloleucel by the regulatory authorities has led to the setting up of the National Plan for Advanced Therapies-CAR-T drugs in Spain. There is evidence of, not only the advantage of identifying the centres most suitable for their administration, but also the need for these to undergo a profound change in order that their healthcare activity is extended, in some cases, to the ability for the in-house manufacture of these types of therapies. The hospitals specialised in paediatric haematology-oncology thus have the challenge of progressing towards a healthcare model that integrates cellular immunotherapy, having the appropriate capacity to manage all aspects relative to their use, manufacture, and administration of these new treatments

    Optimizing the procedure to manufacture clinical‐grade NK cells for adoptive immunotherapy

    Get PDF
    Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation–expansion process and its validation on clinical‐scale. Methods: RPMI‐1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15‐41BBL or K562mbIL21‐41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical‐grade NKAE cells were manufactured in CliniMACS Prodigy. Results: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21‐41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21‐41BBL or K562mbIL15‐41BBL. Clinical‐grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. Conclusions: GMP‐grade NK cells for clinical use can be obtained by using different starting cells and aAPCThis work was supported by the National Health Service of Spain, Instituto de Salud Carlos III (ISCIII), FONDOS FEDER grant (FIS) PI18/01301 to Pérez-Martínez A, CRIS Foundation to Beat Cancer to Escudero A, Fernández A; Navarro A, Mirones I, and Fundación Mari Paz Jiménez Casado and La Sonrisa de Álex to Vela

    Immunotherapy with CAR-T cells in paediatric haematology-oncology

    Get PDF
    [ES] A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel, ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CAR-T en España, evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular, dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos. [EN] Despite being a rare disease, cancer is the first cause of mortality due to disease during the paediatric age in the developed countries. The current, great increase in new treatments, such as immunotherapy, constitutes a new clinical and regulatory paradigm. Cellular immunotherapy is one of these types of immunotherapy. In particular, the advanced therapy drugs with chimeric antigen receptors in the T-lymphocytes (CAR-T), and particularly the CAR-T19 cells, has opened up a new scenario in the approach to haematology tumours like acute lymphoblastic leukaemia and the B-Cell lymphomas. The approval of tisagenlecleucel and axicabtagene ciloleucel by the regulatory authorities has led to the setting up of the National Plan for Advanced Therapies-CAR-T drugs in Spain. There is evidence of, not only the advantage of identifying the centres most suitable for their administration, but also the need for these to undergo a profound change in order that their healthcare activity is extended, in some cases, to the ability for the in-house manufacture of these types of therapies. The hospitals specialised in paediatric haematology-oncology thus have the challenge of progressing towards a healthcare model that integrates cellular immunotherapy, having the appropriate capacity to manage all aspects relative to their use, manufacture, and administration of these new treatments.S

    Immunotherapy with CAR-T cells in paediatric haematology-oncology

    Full text link
    Despite being a rare disease, cancer is the first cause of mortality due to disease during the paediatric age in the developed countries. The current, great increase in new treatments, such as immunotherapy, constitutes a new clinical and regulatory paradigm. Cellular immunotherapy is one of these types of immunotherapy. In particular, the advanced therapy drugs with chimeric antigen receptors in the T-lymphocytes (CAR-T), and particularly the CAR-T19 cells, has opened up a new scenario in the approach to haematology tumours like acute lymphoblastic leukaemia and the B-Cell lymphomas. The approval of tisagenlecleucel and axicabtagene ciloleucel by the regulatory authorities has led to the setting up of the National Plan for Advanced Therapies-CAR-T drugs in Spain. There is evidence of, not only the advantage of identifying the centres most suitable for their administration, but also the need for these to undergo a profound change in order that their healthcare activity is extended, in some cases, to the ability for the in-house manufacture of these types of therapies. The hospitals specialised in paediatric haematology-oncology thus have the challenge of progressing towards a healthcare model that integrates cellular immunotherapy, having the appropriate capacity to manage all aspects relative to their use, manufacture, and administration of these new treatments.A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel,ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CAR-T en España, evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular,dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos.Fundación CRIS contra el cáncer

    Dopamine mobilizes mesenchymal progenitor cells through D2-class receptors and their PI3K/AKT pathway.

    Get PDF
    As the nervous system exerts direct and indirect effects on stem cells mobilization and catecholamines mobilize hematopoietic stem cells, we hypothesized that dopamine might induce mesenchymal progenitor cells (MPCs) mobilization. We show that dopamine induced in vitro MPCs migration through D2-class receptors, and their alternative phosphoinositide 3-kinase/Akt pathways. Also, administration of catecholamines induced in vivo mobilization of colony-forming unit-fibroblast in mice. In contrast, in vitro and in vivo MPCs migration was suppressed by D2-class receptors antagonists and blocking antibodies, consistent with dopamine signaling pathway implication. In humans, patients treated with L-dopa or catecholaminergic agonists showed a significant increase of a MPC-like population (CD45-CD31-CD34-CD105+) in their peripheral blood. These findings reveal a new link between catecholamines and MPCs mobilization and suggest the potential use of D2-class receptors agonists for mobilization of MPCs in clinical settings.We thank Iván Gutierrez, Ander Abarrategi, Manuel Masip, Mar Arriero, and Daniel Pérez for his assistance in several techniques. This work was supported by grants from the Fondo de Investigaciones Sanitarias (FIS; PI05/2217 and PI08/0029), the Madrid Regional Government (S‐BIO‐0204–2006, MesenCAM; P2010/BMD‐2420, CellCAM) in Spain, and Consejería de Salud de la Junta de Andalucía (0027/2006) to J.G.‐C. The experiments were approved by the appropriate committees.S

    Resultados preliminares tras la instauración del programa con medicamentos CAR-T en leucemia aguda linfoblástica en un centro pediátrico

    Full text link
    Fondos FEDER (FIS) PI18/01301, Instituto de Salud Carlos III y Fundación Cris contra el Cánce
    corecore