298 research outputs found

    Detecting colorectal cancer using electrical impedance spectroscopy: an ex vivo feasibility study

    Get PDF
    Objective: Colorectal cancer is the fourth most common cancer worldwide, with a lifetime risk of around 20%. Current solutions do not allow clinicians to objectively assess tissue abnormality during endoscopy and perioperatively. A solution capable of objectively assessing samples in real time could greatly improve the treatment process. A solution that can be integrated in minimally invasive diagnostics and management strategies to provide real-time point-of-care information would be greatly transformative. Electrical impedance spectroscopy (EIS) may provide such a solution. In this paper, we present a feasibility study on using EIS in assessing colorectal tissue. Approach: We performed tetrapolar EIS using ZedScan on excised human colorectal tumour tissue and the matched normal colonic mucosa in 22 freshly resected specimens following elective surgery for colorectal cancer. Histopathological examination was used to confirm the final diagnosis. Statistical significance was assessed with Wilcoxon signed rank test. Main results: Tetrapolar EIS could discriminate cancer with statistically significant results when applying frequencies between 305 Hz – 625 kHz (p < 0.05). 300 Ω was set as the transfer impedance threshold to detect cancer. Thus, the area under the corresponding receiver operating characteristic curve for this threshold was 0.7105. Significance: This feasibility study demonstrates that impedance spectra changes in colorectal cancer tissue are detectable and may be statistically significant, suggesting that EIS has the potential to be the core technology in a novel non-invasive point of care test for detecting colorectal cancer. These results warrant further development and increasing the size of the study with a device specificity designed for colorectal cancer

    MicroRNA Control of Invasion and Metastasis Pathways

    Get PDF
    Despite recent advances, cancer remains a leading cause of death worldwide. In developed countries, the incidence of colorectal and breast cancer has been stable, but no improvement in prognosis has been observed if the patient presents with metastases at diagnosis. This fact highlights the importance of therapeutic approaches targeting cellular invasion and metastasis programs as the next step in cancer treatment. During carcinoma progression a process called epithelial–mesenchymal transition (EMT) results in enhanced invasion and motility which is directly linked with loss of epithelial polarity and epithelial junctions, migration permissive cytoskeleton alterations, and the acquisition of mesenchymal properties. The recent discovery of microRNAs (miRNAs) controlling key cellular pathways has opened a new era in understanding how EMT pathways are modulated. In this review, we classify EMT regulating proteins according to their cellular localization (membrane, cytoplasmic, and nuclear), and summarize the current knowledge on how they are controlled by miRNAs and propose potential miRNAs for the transcripts that may control their expression

    Mass spectrometry: from imaging to metabolic networks

    Get PDF
    A deeper understanding of inter-tumorand intra-tumorheterogeneity is a critical factor for the advancement of next generation strategies against cancer. Under the hypothesis that heterogeneous progression of tumorsis mirrored by their metabolic heterogeneity, detection of biochemical mechanisms responsible of the local metabolism becomes crucial.We show that network analysis of co-localized ions from mass spectrometry imaging data provides a detailed chemo-spatial insightinto the metabolic heterogeneity of tumor. Furthermore, module preservation analysis between colorectal cancer patients with and without metastatic recurrence suggests hypotheses on the nature of the different local metabolic pathways

    BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology

    Get PDF
    Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a significant challenge and represents a major barrier to the translational application of MSI. Existing data analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data for improved information recovery and comparative analysis across tissue specimens using machine learning and related pattern recognition approaches. The proposed solution also provides a means of seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/analyses, resulting in a truly integrated system for translational MSI

    Detecting colorectal cancer using electrical impedance spectroscopy: an ex vivo feasibility study

    Get PDF
    Objective: Colorectal cancer is the fourth most common cancer worldwide, with a lifetime risk of around 20%. Current solutions do not allow clinicians to objectively assess tissue abnormality during endoscopy and perioperatively. A solution capable of objectively assessing samples in real time could greatly improve the treatment process. A solution that can be integrated in minimally invasive diagnostics and management strategies to provide real-time point-of-care information would be greatly transformative. Electrical impedance spectroscopy (EIS) may provide such a solution. In this paper, we present a feasibility study on using EIS in assessing colorectal tissue. Approach: We performed tetrapolar EIS using ZedScan on excised human colorectal tumour tissue and the matched normal colonic mucosa in 22 freshly resected specimens following elective surgery for colorectal cancer. Histopathological examination was used to confirm the final diagnosis. Statistical significance was assessed with Wilcoxon signed rank test. Main results: Tetrapolar EIS could discriminate cancer with statistically significant results when applying frequencies between 305 Hz – 625 kHz (p < 0.05). 300 Ω was set as the transfer impedance threshold to detect cancer. Thus, the area under the corresponding receiver operating characteristic curve for this threshold was 0.7105. Significance: This feasibility study demonstrates that impedance spectra changes in colorectal cancer tissue are detectable and may be statistically significant, suggesting that EIS has the potential to be the core technology in a novel non-invasive point of care test for detecting colorectal cancer. These results warrant further development and increasing the size of the study with a device specificity designed for colorectal cancer

    Colorectal peritoneal metastases: a systematic review of current and emerging trends in clinical and translational research

    Get PDF
    Colorectal peritoneal metastases (CPM) are associated with abbreviated survival and significantly impaired quality of life. In patients with CPM, radical multimodality treatment consisting of cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) has demonstrated oncological superiority over systemic chemotherapy alone. In highly selected patients undergoing CRS + HIPEC, overall survival of over 60% has been reported in some series. These are patients in whom the disease burden is limited and where the diagnosis is made at an early stage in the disease course. Early diagnosis and a deeper understanding of the biological mechanisms that regulate CPM are critical to refining patient selection for radical treatment, personalising therapeutic approaches, enhancing prognostication, and ultimately improving long-term survivorship. In the present study, we outline three broad themes which represent critical future research targets in CPM: (1) enhanced radiological strategies for early detection and staging; (2) identification and validation of translational biomarkers for diagnostic, prognostic, and therapeutic deployment; and (3) development of optimized approaches for surgical cytoreduction as well as more precise strategies for intraperitoneal drug selection and delivery. Herein, we provide a contemporary narrative review of the state of the art in these three areas. A systematic review in accordance with PRISMA guidelines was undertaken on all English language studies published between 2007 and 2017. In vitro and animal model studies were deemed eligible for inclusion in the sections pertaining to biomarkers and therapeutic optimisation, as these areas of research currently remain in the early stages of development. Acquired data were then divided into hierarchical thematic categories (imaging modalities, translational biomarkers (diagnostic/prognostic/therapeutic), and delivery techniques) and subcategories. An interactive sunburst figure is provided for intuitive interrogation of the CPM research landscape

    Population-based observational study of acute pancreatitis in southern England

    Get PDF
    Introduction Acute pancreatitis is a common surgical emergency. Identifying variations in presentation, incidence and management may assist standardisation and optimisation of care. The objective of the study was to document the current incidence management and outcomes of acute pancreatitis against international guidelines, and to assess temporal trends over the past 20 years. Methods A prospective four-month audit of patients with acute pancreatitis was performed across the Wessex region. The Atlanta 2012 classifications were used to define cases, severity and complications. Outcomes were recorded using validated systems and correlated against guideline standards. Case ascertainment was validated with clinical coding and hospital episode statistics data. Results A total of 283 patient admissions with acute pancreatitis were identified. Aetiology included 153 gallstones (54%), 65 idiopathic (23%), 29 alcohol (10%), 9 endoscopic retrograde cholangiopancreatography (3%), 6 drug related (2%), 5 tumour (2%) and 16 other (6%). Compliance with guidelines had improved compared with our previous regional audit. Results were 6.5% mortality, 74% severity stratification, 23% idiopathic cases, 65% definitive treatment of gallstones within 2 weeks, 39% computed tomography within 6–10 days of severe pancreatitis presentation and 82% severe pancreatitis critical care admission. The Atlanta 2012 severity criteria significantly correlated with critical care stay, length of stay, development of complications and mortality (2% vs 6% vs 36%, P < 0.0001). Conclusions The incidence of acute pancreatitis in southern England has risen substantially. The Atlanta 2012 classification identifies patients with severe pancreatitis who have a high risk of fatal outcome. Acute pancreatitis management is seen to have evolved in keeping with new evidence and updated clinical guidelines

    Untargeted UPLC-MS Profiling Pipeline to Expand Tissue Metabolome Coverage: Application to Cardiovascular Disease.

    Get PDF
    Metabolic profiling studies aim to achieve broad metabolome coverage in specific biological samples. However, wide metabolome coverage has proven difficult to achieve, mostly because of the diverse physicochemical properties of small molecules, obligating analysts to seek multiplatform and multimethod approaches. Challenges are even greater when it comes to applications to tissue samples, where tissue lysis and metabolite extraction can induce significant systematic variation in composition. We have developed a pipeline for obtaining the aqueous and organic compounds from diseased arterial tissue using two consecutive extractions, followed by a different untargeted UPLC-MS analysis method for each extract. Methods were rationally chosen and optimized to address the different physicochemical properties of each extract: hydrophilic interaction liquid chromatography (HILIC) for the aqueous extract and reversed-phase chromatography for the organic. This pipeline can be generic for tissue analysis as demonstrated by applications to different tissue types. The experimental setup and fast turnaround time of the two methods contributed toward obtaining highly reproducible features with exceptional chromatographic performance (CV % < 0.5%), making this pipeline suitable for metabolic profiling applications. We structurally assigned 226 metabolites from a range of chemical classes (e.g., carnitines, α-amino acids, purines, pyrimidines, phospholipids, sphingolipids, free fatty acids, and glycerolipids) which were mapped to their corresponding pathways, biological functions and known disease mechanisms. The combination of the two untargeted UPLC-MS methods showed high metabolite complementarity. We demonstrate the application of this pipeline to cardiovascular disease, where we show that the analyzed diseased groups (<i>n </i>= 120) of arterial tissue could be distinguished based on their metabolic profiles

    Integration of robotic surgery into routine practice and impacts on communication, collaboration, and decision making: A realist process evaluation protocol

    Get PDF
    Background: Robotic surgery offers many potential benefits for patients. While an increasing number of healthcare providers are purchasing surgical robots, there are reports that the technology is failing to be introduced into routine practice. Additionally, in robotic surgery, the surgeon is physically separated from the patient and the rest of the team, with the potential to negatively impact teamwork in the operating theatre. The aim of this study is to ascertain: how and under what circumstances robotic surgery is effectively introduced into routine practice; and how and under what circumstances robotic surgery impacts teamwork, communication and decision making, and subsequent patient outcomes. Methods and design: We will undertake a process evaluation alongside a randomised controlled trial comparing laparoscopic and robotic surgery for the curative treatment of rectal cancer. Realist evaluation provides an overall framework for the study. The study will be in three phases. In Phase I, grey literature will be reviewed to identify stakeholders' theories concerning how robotic surgery becomes embedded into surgical practice and its impacts. These theories will be refined and added to through interviews conducted across English hospitals that are using robotic surgery for rectal cancer resection with staff at different levels of the organisation, along with a review of documentation associated with the introduction of robotic surgery. In Phase II, a multi-site case study will be conducted across four English hospitals to test and refine the candidate theories. Data will be collected using multiple methods: the structured observation tool OTAS (Observational Teamwork Assessment for Surgery); video recordings of operations; ethnographic observation; and interviews. In Phase III, interviews will be conducted at the four case sites with staff representing a range of surgical disciplines, to assess the extent to which the results of Phase II are generalisable and to refine the resulting theories to reflect the experience of a broader range of surgical disciplines. The study will provide (i) guidance to healthcare organisations on factors likely to facilitate successful implementation and integration of robotic surgery, and (ii) guidance on how to ensure effective communication and teamwork when undertaking robotic surgery
    corecore