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BASIS: High-performance 
bioinformatics platform for 
processing of large-scale mass 
spectrometry imaging data in 
chemically augmented histology
Kirill Veselkov1, Jonathan Sleeman2,3, Emmanuelle Claude4, Johannes P. C. Vissers4, Dieter 
Galea1, Anna Mroz1, Ivan Laponogov1, Mark Towers  4, Robert Tonge4, Reza Mirnezami1, 
Zoltan Takats1, Jeremy K. Nicholson1 & James I. Langridge4

Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic 
analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular 
content of the samples. In the process, a vast quantity of unrefined data, that can amount to several 
hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a 
significant challenge and represents a major barrier to the translational application of MSI. Existing data 
analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable 
for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we 
present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data 
for improved information recovery and comparative analysis across tissue specimens using machine 
learning and related pattern recognition approaches. The proposed solution also provides a means of 
seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/
analyses, resulting in a truly integrated system for translational MSI.

Cancer costs the European Union (EU) an estimated 124 billion euros every year, with an annual incidence of 
3.45 million cases and 1.75 million associated deaths1. These grim realities call for urgent improvements in our 
fundamental understanding of cancer biology, with which to enhance current, and future, strategies for preven-
tion, early diagnosis, and personalised therapy2. While current high-throughput (high-molecular content) analyt-
ical techniques have the potential to deliver a transformative change in deep cancer phenotyping, the rate-limiting 
step is the challenge of managing, analysing and interpreting the vast molecular datasets that these technologies 
generate3,4. Without progress and tailored strategies in the computational interpretation of these highly complex 
datasets, it is unlikely that these technologies will be able to realize their significant translational potential5,6.

Mass Spectrometry Imaging (MSI) is an emerging technology in research pathology that generates gigabytes 
of raw mass spectrometry data of potential biological and clinical importance7,8. The current need for MSI-based 
bioinformatics solutions can be summarized as: (i) large amount of data generated even for a single tissue due 
to the non-targeted nature of MSI; (ii) high demand for companion prognostic and diagnostic markers for the 
stratification of cancer therapy with high throughput and better affordability relatively to other techniques, which 
can be provided by MS; and (iii) the overall need for machine-learning-driven automation and standardisation 
of image molecular assessments to mitigate the current lack of well-qualified histopathologists for manual data 
interpretation9.

Initial studies using MSI were first described using secondary ion mass spectrometry (SIMS), but the tech-
nique has been more widely adopted since the utilisation of Matrix-Assisted Laser Desorption Ionization 
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(MALDI)10 and, more recently, ambient ionisation techniques, in particular Desorption ElectroSpray Ionisation 
(DESI) mass spectrometry11. While recent advances in MSI technologies provide a wealth of specific molecular 
information for diverse applications such as histopathology and precision medicine, the major impediment to 
progress currently centres on the lack of a complete analytical solution based on chemo-informatic strategies10,11. 
In broad terms, these strategies need to include a series of designated steps covering: (i) raw analytical signal 
pre-processing to distinguish signal from noise and to reduce bio-analytical complexities of MSI data; (ii) imaging 
informatics for co-registration, correlation and integration of MSI data and images with medical imaging and 
histopathological/immune-histochemical data; (iii) putative molecular ion identification and annotation; (iv) 
machine learning approaches for the amalgamation of MSI with other diagnostics and prognostics techniques; 
and (v) network-driven analysis for pathway-oriented tissue analytics9,12,13. If carried out appropriately, these 
strategies can be expected to efficiently transform a large volume of MSI data into more concise biologically and 
clinically useful information (Fig. 1).

An optimised and reproducible workflow for pre-processing of MSI data represents the fundamental 
requirement for enhancing pattern recognition and information recovery across multiple studies9,12,13. A typi-
cal pre-processing workflow starts with the reduction of data volume by means of peak/feature detection. This 
step is commonly performed during MSI data acquisition as it is dependent upon the physical properties of the 
employed analytical platform14,15. The generated peak intensity matrix requires correction of the measured mass 
to charge (m/z) values of molecular ion species. To improve precision of mass determination, mass spectrometers 
are typically calibrated prior to an experiment by comparing the acquired and theoretical mass spectra of known 
“reference” compounds to characterise the mass scale. This procedure, referred to as “external calibration”, is com-
monly used to calibrate mass spectrometers. Subsequent to this base calibration, a variety of experimental/envi-
ronmental factors, such as temperature and voltage variation on the orthogonal acceleration (oa)-TOF m/z scale, 
impact the accuracy of molecular m/z measurements. This is especially the case for large-scale MSI data, which 
are frequently acquired over lengthy, often discontinuous, time frames. Most currently used approaches for mass 
correction rely on a set of molecular ion species with known m/z values assumed to be ubiquitously distributed 

Figure 1. The translational data analytics pipeline for large-scale MS imaging data in clinical research settings. 
Incorporation of large scale MSI-derived data into conventional patient phenotyping approaches will require 
upstream handling and assimilation of multi-source, heterogeneous inputs and subsequent downstream 
generation of clinically relevant biological information. Linking these two steps requires a reproducible 
and robust bioinformatics pipeline that can seamlessly pre-process and analyse large scale MSI datasets. A 
fundamental facet of this pipeline will be its transparency and computational consistency – all pre-processed 
workflows and related meta-data will be registered and stored in open access. Here we introduce the pyBASIS 
(Bioinformatics for mAss Spectrometry Imaging in augmented Systems pathology) computational package that 
aims to address these requirements. The module icons displayed in this diagram were obtained from Flaticon 
under a free-license.
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within tissue sections. However, these reference values are not always available for untargeted molecular phe-
notyping studies16. This is then followed by a strategy for intra- and inter-sample data normalisation to account 
for variations in overall spectral intensity that may be seen as a consequence of factors (such as inhomogeneous 
matrix deposition), variable tissue section thickness, mass spectrometry variations (such as detector gain effects) 
or inconsistent sample preparation. Conventional normalisation strategies often involve scaling of spectral inten-
sities according to total area (or mean intensity); however, their performance can be easily compromised by the 
presence of a few peaks of large and variable intensity17,18. An additional problem inherent to MS-based analysis 
of complex biological mixtures is the fact that molecules present in greater intensities within a given sample 
will tend to exhibit larger variations when subjected to repeated measurement. This asymmetric variation across 
the measurement range, known in statistical terms as heteroscedasticity, represents a significant barrier to the 
effective application of commonly used multivariate techniques for the downstream statistical interrogation of 
MSI datasets. To date, a number of different strategies have been proposed in the literature to stabilize variance, 
and we have recently validated several such techniques in the context of DESI and MALDI-MSI9. Of these, the 
started log-transformation has been shown to be the preferred option. Finally, most current MSI data treatment 
algorithms include a step designed to remove solvent/matrix related spectral signals. This usually involves com-
parative analysis between on-tissue and off-tissue spectral intensity, or assessment of spatial “chaos”/randomness 
of molecular ion channels of individual specimens9,16,19. However, distinguishing tissue from background can be 
challenged by the presence of these very signals. This type of workflow can be applied to small-scale studies where 
these shortcomings can be addressed manually, but the application of these approaches to large scale MSI datasets 
is unfeasible due to the impracticality of manually assessing individual sample data.

Currently used data analysis tools for MSI data are integrated into open-source software packages such as: 
MSIReader20, Cardinal16, OmniSpec21, or freely available openMSI platforms22,23, BioMap (Novartis), SpectViewer 
(CEA), DataCubeExplorer (AMOLF), Mirion (JLU)24, or within commercial packages from instrument man-
ufacturers such as: Xcalibur/ImageQuest (Thermo Fisher Scientific), High Definition Imaging (HDI, Waters 
Corporation) and SCiLS (Bruker Daltonics). These packages are limited to basic pre-processing and pattern rec-
ognition analysis of individual samples9,15. The SpectralAnalysis platform has advanced solutions for multiple 
sample analysis but lacks critical pre-processing capability (such as variance stabilizing normalization and robust 
solvent/matrix filtering) and relies on the relatively inefficient “imzML” file format for data storage and read/write 
speed15. The imzML equivalent data formats for chromatography-mass spectrometry (mzML or mzXML) have 
been previously evaluated to be 3–4 times slower in read and write speeds, and more than 50% larger in space 
compared to HDF5-based mz5 data format25. For this reason, large-scale MSI data set analyses have not been 
forthcoming and are hindering the wider adoption of the technology for clinical research.

Here, we introduce the python BASIS (pyBASIS) platform, which has been designed for reproducible and 
tailored processing of large scale MSI datasets of hundreds of tissue specimens. Key features in the design of 
pyBASIS include (a) high performance data file (HDF5) streaming architecture; (b) iterative data processing 
(one sample at a time); and (c) robust pre-processing pipelines scalable to hundreds, and potentially thousands, 
of tissue specimens. We have implemented an open-source imzML data import that enables the use of MSI data 
from different systems26,27. The proposed solution also provides a means of seamlessly integrating experimental 
laboratory data with downstream bioinformatics interpretation/analyses, via the SymphonyTM platform, resulting 
in a truly integrated system for translational MSI. Here, we demonstrate the application of this workflow on MSI 
(MALDI and DESI) datasets acquired from animal as well as human cancer studies. However, the BASIS platform 
can be applied across a wide range of large-scale MSI data studies

Results and Discussion
The relative inability to effectively interrogate large-scale (hundreds to potentially thousands of samples) datasets 
represents a major roadblock in translational MSI. Key requirements for large scale MSI studies are analytical 
transparency, reproducibility and replicability, workflow versatility, and scalability. Of the currently available solu-
tions, only SpectralAnalysis15 has been designed for the analysis of multiple datasets. However, this platform lacks 
critical pre-processing capability and utilises an inefficient imzML file format, which despite being designed as 
an inter-operable universal file format, is cumbersome in terms of read/write speed as well as data storage and 
accessibility. The pyBASIS platform presented here has been designed to address these limitations.

The unique features of the pyBASIS platform are:

 (A) A modular, customisable and readily extendable workflow with enhanced data pre-processing capabilities, 
covering all prerequisite steps for MSI data treatment. Each module comprises a series of analytical meth-
ods designed to deal with a given pre-processing task, and these methods can be extended/modified by the 
user as required.

 (B) A scalable “out-of-core” data pre-processing pipeline. Out-of-core (or “external memory”) processing is 
a technique used to process data that is too exhaustive to fit in a computer’s main memory (RAM). All 
pyBASIS algorithms have been designed to operate iteratively for enhanced scalability by using high per-
formance HDF5 technologies. Currently available solutions largely lack the capability to perform iterative 
analysis as they have been primarily developed to permit manual interrogation of single samples or small-
scale projects. A design feature incorporated into pyBASIS allows individual sample data to be uploaded 
one at a time into the specific module. Data are then processed, deposited back into the data repository, 
and deleted from memory, with this procedure being repeated iteratively. Figure 2 illustrates the linear 
O(N) dependency between the number of samples processed and the processing time, taking about 4 hours 
for processing 200 MSI dataset samples. Since only one sample is stored in memory at any given time, 
the workflow memory load is constant. The algorithms’ performance will remain linear with the sample 
size increase. Any potential slow-down can be due to the reading and writing of data from the HDF5 file 
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as the database file size increases. However, this slowdown has been shown not to occur to at least tens of 
terabytes of data28, i.e. thousands of samples in the above example.

 (C) Workflow reproducibility and replicability – all workflow steps and generated pre-processing metadata 
(e.g. common m/z feature vector, choice of normalisation strategy, user defined parameter settings) are 
stored as part of the database file. This feature allows consistent and reliable comparison between newly 
collected and archived data.

Mass Correction. Taking as input peak intensity data matrices, the pyBASIS pipeline performs correction 
of inherent inaccuracies in mass measurements, which is an essential prerequisite for downstream comparative 
analysis and annotation of large-scale MSI data. This is especially the case for large-scale MSI data, which are 
frequently acquired over lengthy, often discontinuous, time-frames. Most currently used approaches for mass 
correction rely on a set of molecular ion species with known m/z values assumed to be ubiquitously distributed 
within tissue sections15,16. This assumption is commonly fulfilled for small-scale studies, but not necessarily in 
larger scale studies, where greater molecular compositional variation is expected between samples. Therefore, 
pyBASIS employs a unique kernel-based “clustering” approach to group and align chemically-related ionic spe-
cies to a common m/z vector. The advantage of this approach for untargeted molecular phenotyping is that it does 
not require any prior knowledge of internal or reference peaks with known m/z values for mass drift correction. 
For cases where a user provides one or more “reference” ionic species with known m/z values, an “internal lock” 
mass correction algorithm has also been implemented16. Using this procedure, the m/z drift for each sample 
data-set is calculated by taking the median of the mass shifts across all matched pairs of experimentally observed 
and theoretically calculated m/z ratios, within the mass drift window.

Intra-sample normalization. Systematic differences in the total amount of desorption and ionization  
of molecular ions within and between sample datasets are frequently observed in MALDI and DESI-MSI high- 
throughput studies. The major factors responsible for these differences include inhomogeneity of external matrix 
deposition, variability of tissue thickness, and variation in ionization and detector efficiencies9,29. A total ion 
current normalisation approach has typically been applied to compensate for these effects15,29. However, this 
normalisation method can be easily compromised by the presence of a few large and variable intensity peaks. If 
it is assumed that there is a subset of molecular ion species that do not exhibit changes between tissue spectra, 
then the ratio of these non-differentially abundant metabolites should approximately equate to one. We have pre-
viously shown that this ratio of stable peaks can be robustly derived by calculating the median of molecular ion 
ratios across the entire spectrum with respect to the reference one, typically calculated as a median spectrum9,18. 

Figure 2. Linear O(N) performance of each developed pipeline module. The dependency between the number 
of processed MALDI/DESI-MSI sample datasets acquired on SYNAPT G2-Si platforms MSI sample datasets 
and the processing time (0.5 GB of peak picked (~2000 peaks) data per sample; ~100 GB of data for 200 
samples). All processing was done using a single core/thread of a standalone workstation PC (8 core Intel® Xeon 
® E5-2630 v3 @2.4 GHz, 64 Gb RAM, 3 Tb HDD). The total processing time excluded data import and export, 
which are included in the Total plot.
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The performance of this method is robust against at least 50% peak intensities exhibiting asymmetrical increase 
or decrease in response to biological factors such as tissue morphological variation. Figure S1 illustrates the con-
cept of intra-sample normalization. The changes in overall intensity can be diagnosed with the use of box-plots 
of log-fold changes of individual spectra. In the absence of overall intensity drift, these log-fold changes should 
be centered around zero.

Inter-sample normalization. Variations in instrument parameter settings, environmental conditions and 
sample preparation protocols will lead to non-biologically relevant variability in overall peak intensity in acquired 
datasets. In order to ensure comparability in overall intensity within a batch and between multiple sets of samples, 
a variety of methods can be used to estimate normalization factors (see inter-sample normalization strategies in 
the methods section). The main difference of inter-sample normalization compared to intra-sample normaliza-
tion is that the scaling factor is applied uniformly for all spectra of a given sample. The concept of inter-sample 
normalization is exemplified in Fig. 3. As with intra-sample normalization, the total ion current method can be 
easily compromised by a few large peaks9,18. The median fold change approach described above offers a robust 
way to estimate the overall intensity difference for a given sample when the changes in metabolite composition 
are expected. The difference to intra-sample normalization is that the median fold changes are calculated based on 
homogenised (‘average’) tissue profiles. Similarly, the box plots of log-fold changes of tissue profiles can be used 
for diagnostics to assess the normalization performance.

Variance-stabilizing transformation. An additional problem inherent to MS-based analysis of complex 
biological mixtures is the fact that molecules present in greater intensities within a given sample will tend to 
exhibit larger variations when subjected to repeated measurement. As a result of this technical variance, metab-
olites with higher peak intensities would exhibit larger variability when repeatedly measured, and thus weak 
signals can be buried in the noise of strong signals18,30. The objective of the variance stabilizing transformation is 
to ensure that technical variance remains approximately the same, irrespective of signal intensity29.

To assess the performance of the log-based strategy we selected MALDI imaging data from four different 
tissue sections, determined by a pathologist to be of the same morphological tissue type (i.e. where substantial 
biological variation is not expected within a given region). Figure 4 illustrates the standard deviation as a function 
of the ranked mean peak intensity within homogenous tissue regions. In the absence of heteroscedastic noise 
structure, the running median of the standard deviation should verge on horizontal, with minor oscillations 
only but no significant positive or negative deflection30. In non-transformed data this condition is not met and 
the variation of peak intensity is seen to increase with the rank of mean intensity (i.e. as intensity increases). This 
asymmetric variation across the measurement range represents a significant barrier to the effective application 
of commonly used multivariate techniques for the downstream statistical interrogation of MSI datasets. This is 

Figure 3. Integrated bioinformatics pipeline (pyBASIS) operating within a SymphonyTM environment for 
optimised processing and analysis of large scale MSI datasets. Inter-sample normalisation functionality 
is illustrated with creation of individual sample profiles (A), followed by derivation of sample-specific 
normalisation factors (B) and scaling of all spectral intensities using derived normalisation factors (C). 
Individual steps for the pipeline (1–6) are described in detail in the main text.
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exemplified in the PCA plots where before applying the log-based transformation, the resulting principal compo-
nent (PC) scores are heavily affected by the random variation of high-intensity molecular ion peaks and therefore 
are poorly representative of the overall variation structure within the dataset which would be expected to be pri-
marily due to tissue morphology. Following started log-based transformation, improved stability of transformed 
peak intensities is observed across the measurement intensity range. This ensures that the data structure is con-
sistent with the assumption of downstream pattern recognition techniques.

Solvent/matrix filtering. DESI and MALDI MSI datasets from tissues contain signals comprising ionic 
species of biological molecules as well as those originating from solvent- or matrix-related adducts or fragments. 
The biologically irrelevant signal induced by matrix/solvent related peaks needs to be filtered out for improved 
information recovery by downstream statistical analyses. Two main approaches have been proposed in this 
regard9,19. One approach compares the mean peak intensity of tissue related pixels with background9,16. This 
approach is limited because defining tissue related pixels can be compromised by the very presence of these 
matrix/solvent related peaks. The other approach uses the randomness/degree of molecular chaos as a surrogate 
measure to distinguish biological from non-biological molecular ion features. The problem with this approach is 
that setting a threshold for randomness is somewhat arbitrary and computationally exhaustive when applied to 
large scale studies19.

In computational terms, the spatial distribution of background molecular ion intensities will be negatively 
correlated with the spatial distribution of tissue-related m/z species. Taking advantage of this property, the 
cluster-driven peak filtering strategy employed in pyBASIS calculates, in iterative fashion, the correlation matrix 
of the similarity/difference of signal distribution between m/z features across datasets. Any clustering algo-
rithm can be applied to this correlation matrix to distinguish two “clusters” of m/z species of solvent/matrix and 
tissue-related origin, respectively. The k-means and Gaussian mixture model algorithms are used in the pyBA-
SIS package. Because of its iterative nature, this robust solvent/matrix peak filtering strategy is the only strategy 
that can be applied to large-scale datasets. Figure S2 illustrates our cluster-driven matrix/solvent peak filtering 
strategy. In general, the variability within tissue-related features, including delocalized ones, is expected to be 
smaller than when compared to the variability of the background. Therefore, any delocalized tissue features are 
still expected to be part of the cluster of tissue-related signals.

pyBASIS — SymphonyTM Integration. High-throughput bioinformatic analyses increasingly rely on 
pipeline frameworks to process data. However, this is often in the context of off-line analyses, i.e. the analyses 
of data and or/results are decoupled from acquisition. A recent review describes the design philosophies of sev-
eral current pipeline frameworks, as well as a classification for such frameworks31. The SymphonyTM pipeline 
described and utilised in this study would classify as an implicit (syntax)/configuration (paradigm)/commercial 
(interaction) framework. As mentioned, it can be initiated from the acquisition system in combination with the 
actual laboratory experiment, or, alternatively, be initiated post-acquisition. The former can arguably be regarded 
as high-throughput analysis in the true sense due to the seamless integration of both laboratory experiment and 
bioinformatic interpretation elements.

Figure 4. Impact of variance-stabilizing transformation on information recovery via unsupervised PCA-based 
analysis.
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Successful application of the pre-processing steps outlined should ensure that biologically relevant variation 
is preserved, while features of non-biological origin are minimised. This is demonstrated in Fig. 5 (MALDI-MSI) 
and Fig. 6 (DESI-MSI), where the largest variation in the pre-processed dataset (captured by the first principal 
component) is related to separation of molecular ion patterns according to tissue morphology.

Conclusions
MSI offers an additional layer of spatially resolved chemical information to advance molecular understanding of 
disease processes and complement current research histopathology. The challenge to translational validation of 
MSI approaches in clinical research has until now been the lack of capability for scalable and reproducible process-
ing of large scale MSI data. Here, we have introduced a computational open-source platform (pyBASIS) designed to 

Figure 5. Unsupervised analysis of MALDI-MSI positive ionisation mode imaging datasets, generated on 
Synapt G2-Si Waters mass spectrometer, in breast cancer of mouse models. The first upper row represents 
4 control samples taken from healthy animals, where the highlighted regions indicate the healthy tissues, 
while the lower row indicates solid tumor tissue with minimal (if any) stromal tissue. (A) The PCA-driven 
unsupervised analysis of MALDI-MSI data following the optimized pre-processing strategy separates stromal 
tissue (yellow/red) from cancerous tissue (white) in mammary breast cancer. (B) The representative spectral 
profiles from mammary gland control and tumour specimens. Shown inset are tentative example identifications.

Figure 6. The PCA-driven unsupervised analysis of large-scale DESI-MSI data following the optimized pre-
processing strategy separates stromal tissue (yellow) from cancerous tissue (white/grey) in colorectal cancer.
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deliver optimized and scalable processing of MSI data for enhanced information recovery and comparative analysis 
across tissue specimens using machine learning and related pattern recognition approaches. The proposed solu-
tion also permits seamless integration of experimental laboratory data and downstream bioinformatics, operating 
within the SymphonyTM environment, resulting in high-throughput translational MSI in the true sense.

Methods
An integrated bioinformatics solution (pyBASIS) is presented to account for bio-analytical complexities inherent 
in high-throughput MALDI and DESI-MSI datasets. The informatics pipeline includes a series of modules cov-
ering: (a) kernel density based peak alignment to adjust for shifts in m/z measurements across datasets; (b) intra/
inter-sample normalization to robustly adjust for scaling differences within and between samples and datasets; (c) 
cluster-driven removal of matrix/solvent related signals; and (d) variance stabilizing transformation to compen-
sate for intensity-dependent differences in non-biological variance between small and large molecular ion signals. 
Each module has been designed to operate in an iterative fashion (i.e. processing one single sample at a time) 
and thus is scalable to large MS imaging datasets. The scalable processing is achieved using a high-performance 
(HDF5) database architecture, in which individual samples are uploaded one at a time into the specific module, 
processed, deposited back into the database and deleted from memory. This process is iteratively replicated. The 
output of the pre-processing workflow is a database (‘folder-like’) file (hdf5) containing all processed data (as 
sub-folders) and associated registered/generated pre-processing parameters (“metadata”) for each workflow step. 
The database file organization can be easily inspected via HDF5Viewer (https://www.hdfgroup.org/downloads/
hdfview/). This ensures reproducibility and replicability, offers a mechanism for bioinformatics ‘quality control’, 
and permits benchmarking of newly acquired data against previously processed data stored within the repository. 
Here we describe the details of the workflow and demonstrate the pipeline from data collection to the deposition 
of the pre-processed data, ready for subsequent statistical analyses.

Mass spectrometry imaging. For all MALDI imaging experiments, a matrix solution of 5 mg/ml α-CHCA 
dissolved in an acetonitrile/water/TFA (70:30:0.1, v/v/v) solution was deposited onto fresh frozen tissue sections 
using a SunCollect automated sprayer (SunChrom, Friedrichsdorf, Germany) as described previously32. An over-
sampling technique was applied and the pixel size was fixed to 50 μm. DESI experiments were conducted with 
a modified 2D linear moving stage (Prosolia, Indianapolis, IN) of which the design, operating conditions and 
details are described elsewhere33. In short, the pixel size was defined as 100 μm, the acquisition rate 5 scans/s, and 
using methanol/water (95:5, v/v) as the solvent/spray mixture.

MALDI and DESI MSI data analyses were performed using a MALDI Synapt G2-Si mass spectrometer 
(Waters Corporation, Wilmslow, UK) equipped with an Nd:YAG laser operated at 1 kHz. The instrument was cal-
ibrated prior to analyses using red phosphorus partially dissolved in acetone and the resolving power was 20,000 
FWHM. All analyses were carried out in the positive mode over a mass range of 50–1200 m/z. The obtained MSI 
data were processed, centroided and exported in text file format using High Definition Imaging (HDI) software 
(Waters Corporation)33, which was incorporated in the automation pipeline described below.

Additionally, the previously published MSI dataset of ~100 colon specimens was used for platform validation 
(see supplementary material). It was acquired using negative ion DESI-MSI analysis, with an Exactive mass spec-
trometer, Thermo Fisher Scientific coupled with a home-built automated DESI ion source. Spatial resolution for 
imaging experiments was set to 75 μm. The mass resolution used for all measurements was set to 100,000 with a 
mass accuracy of <4 ppm. Further details on data acquisition are provided in the previous publication9.

Automation pipeline. To streamline pre-processing steps, pyBASIS components were automated via inte-
gration within a workflow automation tool called SymphonyTM (Waters Corporation, Wilmslow, UK). This is a 
client/server application that can be triggered by the MassLynx (Waters Corporation) instrument control and 
acquisition system. In short, a server request is executed, which consists of a list of tasks that are executed upon 
inputting of data. In this instance, tasks are requests that cover the execution of command line interface driven 
modules (exe, bat, script). SymphonyTM tools provide a means to configure and combine a sequence of tasks, and 
set up so-called pipeline definition files. The pipeline applied here for MALDI and DESI MSI data processing 
combines a data transfer step followed by HDI/MALDI chrom (Waters Corporation) peak detection, and pyBA-
SIS MSI data processing. Some of these components are graphically described in Fig. 3.

Mass to charge (m/z) correction. The pyBASIS package employs a kernel-based “clustering” approach 
to group and align similar/identical ionic species to a common m/z vector. Using this approach, a histogram 
is constructed to estimate the frequency of ionic species from sample datasets in distinctive, non-overlapping 
m/z intervals (“bins”). The bin size of the histogram is a user adjustable parameter (5 ppm by default), and can 
be defined in absolute (Da) or relative (ppm) units depending on the type of instrument and experimental con-
ditions. The locally estimated scatterplot-smoothing (loess) method is then applied to obtain the smoothed fre-
quency histogram of ionic species over the entire m/z range34. This smoothing enhances histogram resolution to 
1 ppm for more accurate mass estimation across datasets. Clusters of similar/identical ionic species should appear 
as peaks on the smooth frequency histogram. The cluster centroids are found when the first derivative of this 
smooth histogram changes sign, and these are used to denote the common m/z feature vector for all samples. The 
m/z feature vector of each sample-dataset is then matched to the common one by means of the nearest-neighbour 
approach34. The maximum mass drift is a user adjustable parameter (100 ppm by default) and can be provided in 
absolute (Da) or in relative (ppm) units.

Additionally, an “internal lock” mass correction algorithm has been implemented for cases where a user pro-
vides one or more “reference” ions with known m/z values, ubiquitously distributed in biological tissues16. Using 
this procedure, the m/z drift for each sample dataset is calculated by taking the median of the mass shifts across all 

https://www.hdfgroup.org/downloads/hdfview/
https://www.hdfgroup.org/downloads/hdfview/
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matched pairs of experimentally observed and theoretically calculated m/z ratios, within the mass drift window. 
The m/z of each molecular ion is calibrated by adding or subtracting the estimated mass drift. As with the first 
approach, the maximum mass drift is a user-adjustable parameter (100 ppm by default) and can be defined in 
absolute (Da) or in relative (ppm) units.

Intra-sample normalization. The pyBASIS package implements several intra-sample strategies to remove 
biologically unrelated pixel-to-pixel variation in overall signal intensity9,29 by:

 1) “Mean” (total ion current): Each mass spectrum is normalized to its mean ion current by dividing each 
peak intensity within a mass spectrum by the mean of all peak intensities of the same spectrum.

 2) “Median”: Each mass spectrum is normalized to its median ion current by dividing each peak intensity 
within a mass spectrum by the median of all peak intensities of the same spectrum.

 3) “Median fold change”: Each mass spectrum is normalized to its median fold change ion current by dividing 
each peak intensity within a mass spectrum by the median fold change between all peak intensities of 
the same spectrum and reference spectrum. The reference spectrum is typically chosen to be the median 
profile across all dataset spectra.

Inter-sample normalization. The inter-sample normalization strategies adjust for sample-to-sample differ-
ences in overall signal intensity by dividing all spectra of each sample dataset by a sample-specific scaling factor. 
The scaling factors are derived based on “homogenized” tissue molecular ion profiles, typically calculated as 
the average profile across all tissue-related spectra. Similar to intra-sample normalization, the pyBASIS package 
includes the mean, median and median fold change inter-sample normalization approaches.

 1) “Mean” (total ion current): Each MSI dataset is normalized to its mean ion current by dividing each peak 
intensity of a dataset by the mean of all peak intensities of the same dataset.

 2) “Median” (total ion current): Each MSI dataset is normalized to its median ion current by dividing each 
peak intensity of a dataset by the median of all peak intensities of the same dataset.

 3) “Median fold change”: Each MSI dataset is normalized to its median fold change ion current by dividing each 
peak intensity of a dataset by the median fold change between the peak intensities of the same dataset profile 
and reference dataset profile. The reference is typically chosen to be the median profile across all samples.

Variance stabilizing transformation. Here, we assume that the error structure of MS imaging data is 
characterized by increasing technical variance of molecular level measurements as a function of increased signal 
intensity, and peak intensities arise through a combination of genuine signals and noise-related signals from 
different sources, which can be additive or multiplicative in nature30. To account for the influence of multiplica-
tive noise, the pyBASIS package employs the started-logarithmic transformation carried out by adding a small 
constant (“offset”) to the data prior to log transformation. The offset is calculated according to the intensity of 
the smallest peak9. The smallest peak was defined to as 50 counts in our study but can be automatically found by 
calculating the lower 5% quantile intensity of all peaks above zero.

Solvent/matrix peak filtering. A cluster-driven peak filtering strategy was employed, which calculates, in 
an iterative fashion (processing one sample at a time), the correlation matrix of the similarity/difference of signal 
distribution between m/z features across datasets. The k-means (by default) and Gaussian mixture model algo-
rithms are implemented in the pyBASIS package. Because of its iterative nature, this robust solvent/matrix peak 
filtering strategy can be applied to large-scale datasets. The workflow currently exports 2 independent clusters of 
m/z channels across all samples. The tissue related cluster could be easily visually inspected and identified.

Code availability. The pre-processing Python (py-)BASIS package is freely available under the Apache-2 
license at PyPI (link to be provided). The source code, documentation and issue tracking to facilitate the wide use, 
extensions and validations of the workflow across various use cases are available at https://bitbucket.org/iAnalyt-
ica/basis_pyproc.git. The SymphonyTM pipelines for the seamless integration of experimental laboratory data with 
the BASIS pre-processing workflows are also provided within the repository.
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