47 research outputs found

    Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus

    Get PDF
    WOS: 000390231600001PubMed ID: 27622383Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory.Max-Planck Society; DFG [HA 3139/4-1]; ERC [322564]; contract-research-project for the Bundeswehr Medical Service [M/SABX/005]This work was mostly financed by institutional resources of the Max-Planck Society, a DFG grant to B.H. and M.T. (HA 3139/4-1) and an ERC grant to D.T. (NewGenes, 322564). We thank Sonja Ihle, Susanne Krochter, Ruth Rottscheidt for contributing to collecting animals in the wild and our animal care takers for active involvement of optimizing the scheme for wild mouse keeping. The initial analysis of mice from Afghanistan was funded by contract-research-project for the Bundeswehr Medical Service M/SABX/005. We thank Bastian Pfeifer for help with software package PopGenome, Leslie Turner for discussion and Daniel M. Hooper and Trevor Price for helpful comments on the manuscript. D.T. had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis

    Data from: No speed dating please! Patterns of social preference in male and female house mice

    No full text
    Background: In many animal species, interactions between individuals of different sex often occur in the context of courtship and mating. During these interactions, a specific mating partner can be chosen. By discriminating potential mates according to specific characteristics, individuals can increase their evolutionary fitness in terms of reproduction and offspring survival. In this study, we monitored the partner preference behaviour of female and male wild house mice (Mus musculus domesticus) from populations in Germany (G) and France (F) in a controlled cage setup for 5 days and six nights. We analysed the effects of individual factors (e.g. population origin and sex) on the strength of preference (selectivity), as well as dyadic factors (e.g. neutral genetic distance and major histocompatibility complex (MHC) dissimilarity) that direct partner preferences. Results: Selectivity was stronger in mice with a pure population background than mixed individuals. Furthermore, female mice with a father from the German population had stronger selectivity than other mice. In this group, we found a preference for partners with a larger dissimilarity of their father’s and their partner’s MHC, as assessed by sequencing the H2-Eß locus. In all mice, selectivity followed a clear temporal pattern: it was low in the beginning and reached its maximum only after a whole day in the experiment. After two days, mice seemed to have chosen their preferred partner, as this choice was stable for the remaining four days in the experiment. Conclusions: Our study supports earlier findings that mate choice behaviour in wild mice can be paternally influenced. In our study, preference seems to be potentially associated with paternal MHC distance. To explain this, we propose familial imprinting as the most probable process for information transfer from father to offspring during the offspring’s early phase of life, which possibly influences its future partner preferences. Furthermore, our experiments show that preferences can change after the first day of encounter, which implies that extended observation times might be required to obtain results that allow a valid ecological interpretation

    No speed dating please! Patterns of social preference in male and female house mice

    No full text
    Abstract Background In many animal species, interactions between individuals of different sex often occur in the context of courtship and mating. During these interactions, a specific mating partner can be chosen. By discriminating potential mates according to specific characteristics, individuals can increase their evolutionary fitness in terms of reproduction and offspring survival. In this study, we monitored the partner preference behaviour of female and male wild house mice (Mus musculus domesticus) from populations in Germany (G) and France (F) in a controlled cage setup for 5 days and six nights. We analysed the effects of individual factors (e.g. population origin and sex) on the strength of preference (selectivity), as well as dyadic factors (e.g. neutral genetic distance and major histocompatibility complex (MHC) dissimilarity) that direct partner preferences. Results Selectivity was stronger in mice with a pure population background than mixed individuals. Furthermore, female mice with a father from the German population had stronger selectivity than other mice. In this group, we found a preference for partners with a larger dissimilarity of their father’s and their partner’s MHC, as assessed by sequencing the H2-Eß locus. In all mice, selectivity followed a clear temporal pattern: it was low in the beginning and reached its maximum only after a whole day in the experiment. After two days, mice seemed to have chosen their preferred partner, as this choice was stable for the remaining four days in the experiment. Conclusions Our study supports earlier findings that mate choice behaviour in wild mice can be paternally influenced. In our study, preference seems to be potentially associated with paternal MHC distance. To explain this, we propose familial imprinting as the most probable process for information transfer from father to offspring during the offspring’s early phase of life, which possibly influences its future partner preferences. Furthermore, our experiments show that preferences can change after the first day of encounter, which implies that extended observation times might be required to obtain results that allow a valid ecological interpretation

    FileS1_H2_EbExon2_phased

    No full text
    This file is an alignment of all sequences of the Histocompatibility 2 class II locus antigen E beta, Exon 2. Each individual is represented by its two alleles, where the phase of the two alleles was determined by using the phasing function included in the program DNASp (Rozas, J. (2009). DNA Sequence Polymorphism Analysis using DnaSP.)

    Additional file 3: Figure S2. of No speed dating please! Patterns of social preference in male and female house mice

    No full text
    a) Allele sharing tree (Bowcock et al. 1994) for all animals based on microsatellites. Even though a separation between populations is evident, small branch lengths reflect a still close relationship between individuals of all breeding types. b) Neighbour-joining tree of H2-Eß locus Exon 2 haplotype sequences. Bootstrap values > 50 are shown. No pattern of population divergence can be detected, both populations share several alleles. (PNG 301 kb

    Additional file 1: Table S1. of No speed dating please! Patterns of social preference in male and female house mice

    No full text
    All individual information (microsatellite data, experimental information). (CSV 27 kb

    Meta-populational demes constitute a reservoir for large MHC allele diversity in wild house mice (Mus musculus)

    No full text
    Abstract Background The MHC class I and II loci mediate the adaptive immune response and belong to the most polymorphic loci in vertebrate genomes. In fact, the number of different alleles in a given species is often so large that it remains a challenge to provide an evolutionary model that can fully account for this. Results We provide here a general survey of MHC allele numbers in house mouse populations and two sub-species (M. m. domesticus and M. m. musculus) for H2 class I D and K, as well as class II A and E loci. Between 50 and 90% of the detected different sequences constitute new alleles, confirming that the discovery of new alleles is indeed far from complete. House mice live in separate demes with small effective population sizes, factors that were proposed to reduce, rather than enhance the possibility for the maintenance of many different alleles. To specifically investigate the occurrence of alleles within demes, we focused on the class II H2-Aa and H2-Eb exon 2 alleles in nine demes of M. m. domesticus from two different geographic regions. We find on the one hand a group of alleles that occur in different sampling regions and three quarters of these are also found in both sub-species. On the other hand, the larger group of different alleles (56%) occurs only in one of the regions and most of these (89%) only in single demes. We show that most of these region-specific alleles have apparently arisen through recombination and/or partial gene conversion from already existing alleles. Conclusions Demes can act as sources of alleles that outnumber the set of alleles that are shared across the species range. These findings support the reservoir model proposed for human MHC diversity, which states that large pools of rare MHC allele variants are continuously generated by neutral mutational mechanisms. Given that these can become important in the defense against newly emerging pathogens, the reservoir model complements the selection based models for MHC diversity and explains why the exceptional diversity exists

    Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the prader-willi syndrome imprinted region as a possible source of behavioral divergence

    No full text
    Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a-Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader-Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice
    corecore