15 research outputs found

    The Video intervention to Inspire Treatment Adherence for Life (VITAL Start): protocol for a multisite randomized controlled trial of a brief video-based intervention to improve antiretroviral adherence and retention among HIV-infected pregnant women in Malawi

    Get PDF
    Abstract Background Improving maternal antiretroviral therapy (ART) retention and adherence is a critical challenge facing prevention of mother-to-child transmission (PMTCT) of HIV programs. There is an urgent need for evidence-based, cost-effective, and scalable interventions to improve maternal adherence and retention that can be feasibly implemented in overburdened health systems. Brief video-based interventions are a promising but underutilized approach to this crisis. We describe a trial protocol to evaluate the effectiveness and implementation of a standardized educational video-based intervention targeting HIV-infected pregnant women that seeks to optimize their ART retention and adherence by providing a VITAL Start (Video intervention to Inspire Treatment Adherence for Life) before committing to lifelong ART. Methods This study is a multisite parallel group, randomized controlled trial assessing the effectiveness of a brief facility-based video intervention to optimize retention and adherence to ART among pregnant women living with HIV in Malawi. A total of 892 pregnant women living with HIV and not yet on ART will be randomized to standard-of-care pre-ART counseling or VITAL Start. The primary outcome is a composite of retention and adherence (viral load < 1000 copies/ml) 12 months after starting ART. Secondary outcomes include assessments of behavioral adherence (self-reported adherence, pharmacy refill, and tenofovir diphosphate concentration), psychosocial impact, and resource utilization. We will also examine the implementation of VITAL Start via surveys and qualitative interviews with patients, partners, and health care workers and conduct cost-effectiveness analyses. Discussion This is a robust evaluation of an innovative facility-based video intervention for pregnant women living with HIV, with the potential to improve maternal and infant outcomes. Trial registration ClinicalTrials.gov, NCT03654898. Registered on 31 August 2018

    Grey and white matter abnormalities in temporal lobe epilepsy with and without mesial temporal sclerosis

    No full text
    Temporal lobe epilepsy with (TLE-mts) and without (TLE-no) mesial temporal sclerosis display different patterns of cortical neuronal loss, suggesting that the distribution of white matter damage may also differ between the sub-groups. The purpose of this study was to examine patterns of white matter damage in TLE-mts and TLE-no and to determine if identified changes are related to neuronal loss at the presumed seizure focus. The 4 T diffusion tensor imaging (DTI) and T1-weighted data were acquired for 22 TLE-mts, 21 TLE-no and 31 healthy controls. Tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) maps and voxel-based morphometry (VBM) was used to identify grey matter (GM) volume atrophy. Correlation analysis was conducted between the FA maps and neuronal loss at the presumed seizure focus. In TLE-mts, reduced FA was identified in the genu, body and splenium of the corpus callosum, bilateral corona radiata, cingulum, external capsule, ipsilateral internal capsule and uncinate fasciculus. In TLE-no, FA decreases were identified in the genu, the body of the corpus callosum and ipsilateral anterior corona radiata. The FA positively correlated with ipsilateral hippocampal volume. Widespread extra-focal GM atrophy was associated with both sub-groups. Despite widespread and extensive GM atrophy displaying different anatomical patterns in both sub-groups, TLE-mts demonstrated more extensive FA abnormalities than TLE-no. The microstructural organization in the corpus callosum was related to hippocampal volume in both patients and healthy subjects demonstrating the association of these distal regions

    Alu insertion polymorphisms as evidence for population structure in baboons

    Get PDF
    Male dispersal from the natal group at or near maturity is a feature of most baboon (Papio) species. It potentially has profound effects upon population structure and evolutionary processes, but dispersal, especially for unusually long distances, is not readily documented by direct field observation. In this pilot study, we investigate the possibility of retrieving baboon population structure in yellow (Papio cynocephalus) and kinda (Papio kindae) baboons from the distribution of variation in a genome-wide set of 494 Alu insertion polymorphisms, made available via the recently completed Baboon Genome Analysis Consortium. Alu insertion variation in a mixed population derived from yellow and olive (Papio anubis) baboons identified each individual's proportion of heritage from either parental species. In an unmixed yellow baboon population, our analysis showed greater similarity between neighboring than between more distantly situated groups, suggesting structuring of the population by male dispersal distance. Finally (and very provisionally), an unexpectedly sharp difference in Alu insertion frequencies between members of neighboring social groups of kinda baboons suggests that intergroup migration may be more rare than predicted in this little known species

    Some observations of diatoms under turbulence

    No full text
    The effect of turbulence on several freshwater diatom taxa was investigated and our findings are described herein. We have compared diatom morphology in shallow natural systems that experience turbulence due to wind and in river/waterfall systems where turbulence is due to high flow rates. We have also introduced turbulence into diatom laboratory cultures by mechanical shaking and by forcing air into the media. In particular, we have studied diatoms in five independent environments or cultures: the freshwater diatoms Tabellaria and Eunotia in equatorial lakes experiencing extreme seasonal variability in depth; two freshwater diatom monocultures of Aulacoseira granulata var angustissima and Melosira varians in the laboratory; and a freshwater diatom community possessing equal amounts (by number) of elongated and non-elongated diatoms (mostly Nitzschia and mostly Cyclotella, respectively) in the laboratory. We have demonstrated the effect of turbulence on freshwater diatom frustule morphologies and, perhaps more importantly, the effect of turbulence on freshwater diatom species population after controlled perturbation of the organisms’ environment. It has been widely reported that symmetry is often preferred in biological evolution, however here we have observed a preference towards asymmetry for the survival of diatoms in the presence of environmental stress (in particular, turbulence). We also note that to date there have been no systematic attempts to manipulate diatom frustules using external stimuli. We therefore present a proof-of-concept study in order to demonstrate: (i) that diatom morphologies can be manipulated by controlled simple external triggers (chemical and physical) (ii) that population balance (i.e. natural selection) can be controlled via simple external triggers (chemical and physical). This approach could open up an entire new field of future studies wherein controlled environmental perturbations are used to manipulate the structure, form, growth and reproduction of biological species
    corecore