27 research outputs found

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit

    Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    Get PDF
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse. © 2016 Beaudrot et al

    The implementation and evaluation of an e-Learning training module for observed structured clinical examination (OSCE) raters in Canada

    No full text
    The purpose of this study was to evaluate an e-Learning training module for OSCE raters who participated in the assessment of third-year medical students at the University of Ottawa, Canada. The effects of online training and those of traditional in-person (face-to-face) orientation were compared. Of the 90 physicians recruited as raters for this OSCE, 60 consented to participate (67.7%) in the study in March 2017. Of the 60 participants, 55 rated students during the OSCE, while the remaining 5 were back-up raters

    Building capacity for medical education research in family medicine: the Program for Innovation in Medical Education (PIME)

    No full text
    Abstract Background Despite the apparent benefits to teaching, many faculty members are reluctant to participate in medical education research (MER) for a variety of reasons. In addition to the further demand on their time, physicians often lack the confidence to initiate MER projects and require more support in the form of funding, structure and guidance. These obstacles have contributed to a decline in physician participation in MER as well as to a perceived decay in its quality. As a countermeasure to encourage physicians to undertake research, the Department of Family Medicine at the University of Ottawa implemented a programme in which physicians receive the funding, coaching and support staff necessary to complete a 2-year research project. The programme is intended primarily for first-time researchers and is meant to serve as a gateway to a research career funded by external grants. Since its inception in 2010, the Program for Innovation in Medical Education (PIME) has supported 16 new clinician investigators across 14 projects. Methods We performed a programme evaluation 3 years after the programme launched to assess its utility to participants. This evaluation employed semi-structured interviews with physicians who performed a research project within the programme. Results Programme participants stated that their confidence in conducting research had improved and that they felt well supported throughout their project. They appreciated the collaborative nature of the programme and remarked that it had improved their willingness to solicit the expertise of others. Finally, the programme allowed participants to develop in the scholarly role expected by family physicians in Canada. Conclusion The PIME may serve as a helpful model for institutions seeking to engage faculty physicians in Medical Education Research and to thereby enhance the teaching received by their medical learners

    Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    No full text
    Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B(4) from the 5-lipoxygenase pathway and prostaglandin E(2) through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B(4) while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A(2A) receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A(2A) receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A(2A) receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine's effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E(2) on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A(2A) receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal.

    No full text
    Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B(4) from the 5-lipoxygenase pathway and prostaglandin E(2) through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B(4) while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A(2A) receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A(2A) receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A(2A) receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine's effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E(2) on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A(2A) receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils

    No full text
    In LPS-stimulated human neutrophils, engagement of the adenosine A2A receptor selectively prevented the expression and release of TNF-α, MIP-1α/CCL3, MIP-1β/CCL4, MIP-2α/CXCL2, and MIP-3α/CCL20. In mice lacking the A2A receptor, granulocytes that migrated into the air pouch 4 h after LPS injection expressed higher mRNA levels of TNF-α, MIP-1α, and MIP-1β than PMNs from wild-type mice. In mononuclear cells present in the air pouch 72 h after LPS injection, expression of IL-1β, TNF-α, IL-6, and MCP-2/CCL6 was higher in A2AR knockout mice. In addition to highlighting neutrophils as an early and pivotal target for mediating adenosine anti-inflammatory activities, these results identify TNF-α and the MIP chemokine family as gene products whose expression is pivotally affected by activation of A2AR in LPS-activated PMNs. Modulation by A2AR in the production of inflammatory signals by PMNs may thus influence the evolution of an inflammatory response by reducing the activation status of inflammatory cells.Shaun R. McColl, Mireille St-Onge, Andree-Anne Dussault, Cynthia Laflamme, Line Bouchard, Jean Boulanger, and Marc Poulio

    Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs

    No full text
    The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and βarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for G(s)). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology
    corecore