879 research outputs found

    Contextual analysis of health care at discharge in leprosy: an integrative review

    Get PDF
    Objective: To analyze contextual relations of health care in the discharge of leprosy. Method: An analytical, reflexive study based on the theoretical framework of context analysis, elaborated through an integrative review of literature in the databases SCOPUS, PUBMED, LILACS, SCIELO and BDENF, with uncontrolled descriptors Leprosy and Patient Discharge, obtaining 14 publications. Results: The immediate context addresses health care at discharge in leprosy; the specific context treats leprosy as a public health problem; the symbolic conceptions and marks involving leprosy are encompassed by the general context; and in the metacontext are described the health programs and policies that subsidize the care of leprosy patients. Conclusion: The contextual elements emphasize the need to guarantee universal coverage of cases of leprosy, from diagnosis to the post-discharge, reinforcing leprosy as a public health problem. Despitehe limitations of the bibliographic studies, these have relevance for the health area

    Sensitive CO and 13CO survey of water fountain stars Detections towards IRAS 18460-0151 and IRAS 18596+0315

    Get PDF
     This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this recordContext. Water fountain stars represent a stage between the asymptotic giant branch (AGB) and planetary nebulae phases, when the mass loss changes from spherical to bipolar. These types of evolved objects are characterized by high-velocity jets in the 22 GHz water maser emission. Aims. The objective of this work is to detect and study in detail the circumstellar gas in which the bipolar outflows are emerging. The detection and study of thermal lines may help in understanding the nature and physics of the envelopes in which the jets are developing. Methods. We surveyed the CO and 13CO line emission towards a sample of ten water fountain stars through observing the J = 1 → 0 and 2 → 1 lines of CO and 13CO, using the 30 m IRAM radio-telescope at Pico Veleta. All the water fountains visible from the observatory were surveyed. Results. Most of the line emission arises from foreground or background Galactic clouds, and we had to thoroughly analyse the spectra to unveil the velocity components related to the stars. In two sources, IRAS 18460-0151 and IRAS 18596+0315, we identified wide velocity components with a width of 35 - 40 km s-1 that are centred at the stellar velocities. These wide components can be associated with the former AGB envelope of the progenitor star. A third case, IRAS 18286-0959, is reported as tentative; in this case a pair of narrow velocity components, symmetrically located with respect to the stellar velocity, have been discovered. We also modelled the line emission using an LVG code and derived some global physical parameters, which allowed us to discuss the possible origin of this gas in relation to the known bipolar outflows. For IRAS 18460-0151 and IRAS 18596+0315, we derived molecular masses close to 0.2 M⊙, mean densities of 104 cm-3, and mass-loss rates of 10 -4 M⊙ yr-1. The kinetic temperatures are rather low, between 10 and 50 K in both cases, which suggests that the CO emission is arising from the outer and cooler regions of the envelopes. No fitting was possible for IRAS 18286-0959, because line contamination can not be discarded in this case. Conclusions. The molecular masses, mean densities, and mass-loss rates estimated for the circumstellar material associated with IRAS 18460-0151 and IRAS 18596+0315 confirm that these sources are at the end of the AGB or the beginning of the post-AGB evolutionary stages. The computed mass-loss rates are among the highest ones possible according to current evolutionary models, which leads us to propose that the progenitors of these water fountains had masses in the range from 4 to 8 M ⊙. We speculate that CO emission is detected in water fountains as a result of a CO abundance enhancement caused by current episodes of low-collimation mass-loss. © ESO, 2013.MICINNJunta de Andalucí

    The evolution of civil war severity, 1816-2005

    Get PDF
    © 2016 Walter de Gruyter GmbH, Berlin/Boston. Previous analyses of civil war trends tend to be informal and consider only post 1945 data. We examine data on civil wars over the period 1816-2005, using new methods for evolutionary growth processes. We find a number of new patterns and trends in civil war that have received little attention in previous research, including a structural break in frequency of conflict with decolonialization, as well as evidence of periodicity in civil conflict. We develop new measures of civil war intensity and impact, and find that conflicts have been generally more severe in the 20th than in the 19th century. We also find that the frequency-severity distribution of civil war does not appear to follow a power-law distribution, unlike data on many other types of conflict. Although structural trends suggest an increase in future civil wars, we discuss possible limiting factors that might prevent this in light of the recent observed decline in civil wars after the Cold War

    Modelling isotropic and kinematic hardening of granular materials with a thermodynamical approach

    Get PDF
    The thermodynamic framework for continuum mechanics can be applied to model granular and porous materials. Broadly speaking, there exists two approaches: the French school approach and Ziegler’s approach. Despite the fact that they both have the same foundations, differences between them emerge regarding the way in which stored energy is accounted for. This is illustrated here by applying the two approaches to the classical Von Mises kinematic and isotropic hardening models. In Ziegler’s approach, the stored energy is solely used for the kinematic hardening, as opposed to the French school approach in which the stored energy is allowed in both cases of hardening. In spite of which modelling approach is taken, we will show how certain modifications to these theories have to be made in order to develop the classical modified Cam Clay model, which emphasises the difference between the classical and the thermodynamic formulations

    The pre-main sequence binary HK Ori : Spectro-astrometry and EXPORT data

    Full text link
    In this paper we present multi-epoch observations of the pre-main sequence binary HK Ori. These data have been drawn from the EXPORT database and are complemented by high quality spectro-astrometric data of the system. The spectroscopic data appear to be very well represented by a combination of an A dwarf star spectrum superposed on a (sub-)giant G-type spectrum. The radial velocity of the system is consistent with previous determinations, and does not reveal binary motion, as expected for a wide binary. The spectral, photometric and polarimetric properties and variability of the system indicate that the active object in the system is a T Tauri star with UX Ori characteristics. The spectro-astrometry of HK Ori is sensitive down to milli-arcsecond scales and confirms the speckle interferometric results from Leinert et al. The spectro-astrometry allows with fair certainty the identification of the active star within the binary, which we suggest to be a G-type T Tauri star based on its spectral characteristics.Comment: MNRAS in press 8 pages 7 figure

    Non-Perturbative Topological Strings And Conformal Blocks

    Get PDF
    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.Comment: 36 page

    A magnetically collimated jet from an evolved star

    Full text link
    Planetary nebulae often have asymmetric shapes, which could arise due to collimated jets from evolved stars before evolution to the planetary nebula phase. The source of jet collimation in these stars is unknown. Magnetic fields are thought to collimate outflows that are observed in many other astrophysical sources, such as active galactic nuclei and proto-stars, although hitherto there are no direct observations of both the magnetic field direction and strength in any collimated jet. Theoretical models have shown that magnetic fields could also be the dominant source of collimation of jet in evolved stars. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A at 2.6 kpc from the Sun, which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, ~1,000 AU from the star. We find direct evidence that the magnetic field is collimating the jet.Comment: Published in Nature 440 (March 2nd 2006). High-res figures can be found at http://www.jb.man.ac.uk/~wouter/papers/w43a/w43a.htm

    Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Nino in Panama

    Get PDF
    BackgroundCutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Nino Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission.Methodology and FindingsWe studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panama, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000?2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases.ConclusionAssociation patterns of CL with ENSO and local climatic factors in Panama indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations
    corecore