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ABSTRACT

Thermodynamics based models for granular and porous materials have been
widely used in the development of more complex models. Broadly speaking, there ex-
ists two approaches; in both, the first law of thermodynamics enables one to model the
recoverable response. However, the approaches differ slightly when dealing with the
second law of thermodynamics, i.e. irreversable processes. The French school approach
introduces the notion of thermodynamic forces, flow and evolution rules. Ziegler’s ap-
proach directly postulates a positive dissipation function on a dissipative stress space,
which then requires an extra mapping step to the true stress space. Despite the fact that
they both have the same foundations, differences emerge between them regarding the
way in which stored energy is accounted for in the development of kinematic and/or
isotropic hardening. In Ziegler’s approach, the stored energy is solely used for the kine-
matic hardening, as opposed to the French school approach in which the stored energy
is allowed in both cases of hardening. Despite which modelling approach is taken, we
will show how certain modifications to these theories have to be made in order to de-
velop classical models.

BACKGROUND

The dissipation function for isothermal processes which are only subject to
small strains is defined by the Clausius - Plank inequality:

Φ̇ = σij ε̇ij − Ψ̇ ≥ 0 (1)

Where Φ̇ is the rate of dissipation, σij is the Cauchy stress tensor, the small strain tensor
is εij and Ψ̇ the rate of Helmholtz free energy .

Reversible process

For a reversible process there exists no dissipation and all the work done can
be retrieved after the process ends. In such instances, the state of the material is com-
pletely defined by its observable variables (θ, εij), where θ is the temperature, omitted
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in this study. The rate of the free energy is solely a function of strain (Ψ(εij)). Since the
dissipation rate is zero for reversible processes, it follows:(

σij −
∂Ψ

∂εij

)
ε̇ij = 0

For a non viscous material (i.e. σij 6= σij(ε̇ij)), the terms in the parenthesis are inde-
pendent of the strain rate, thus:

σij =
∂Ψ

∂εij
(2)

Irreversible process

When dealing with irreversible processes, the dissipation rate is no longer zero;
furthermore, a new set of state variables must be introduced. These variables are often
termed internal variables, because, as opposed to the state variables previously dis-
cussed, they can not be measured in a straight forward manner. These internal variables
are often strain-like variables such as plastic strains (but not only), which are the focus
of this study. At this time, two approaches have emerged to ensure that the Clausius -
Plank inequality (1) holds. These are: the French school approach, the one introduced
in the classic books of Lemaitre and Chaboche (1994) and Coussy (2004), and the ap-
proach which makes use of Ziegler’s postulation, hereafter termed Ziegler’s approach;
accounts for this latter approach could be found in, for example, the paper by Collins
and Houlsby (1997).

French school approach
The free energy is now required to be a function of observable variables (εij) and inter-
nal variables (εpij, ξi), which could also be decoupled into elastic and plastic parts under
the small strain theory.

Ψ(εij − εpij, ξi) = Ψe(εij − εpij) + Ψp(ξi) (3)

The inequality (1) can be re-arranged as follows:(
σij −

∂Ψ

∂εij

)
ε̇ij +

∂Ψ

∂εij
ε̇pij −

∂Ψp

∂ξi
ξ̇i ≥ 0

It can be argued, even under irreversible processes, that the term inside the parenthesis
must be zero (Coleman and Gurtin 1967). Hence, the inequality reduces to the following
expression:

Φ̇ = σij ε̇
p
ij − χiξ̇i ≥ 0 (4)

where the stress and the thermodynamics forces (χi) are:

σij =
∂Ψ

∂εij
; χi =

∂Ψp

∂ξi
(5)

In other to ensure that the inequality (4) holds, both terms are enforced to be positive by
introducing a convex potential (g(σij, χi)). The expression for the rate of plastic strain



is known as the flow rule and the one for the internal variables the evolution rule. The
positiveness of the dissipation holds for a convex potential function (g) whose minimum
lies at the origin.

ε̇pij = λ̇
∂g

∂σij
; ξ̇i = −λ̇ ∂g

∂χi
(6)

Ziegler’s approach
The observable variable is the total strain (εij) and the set of internal variables are
termed αij which could include the plastic strains. Therefore, the free energy and dis-
sipation function are defined as:

Ψ = Ψ(εij, αij); Φ̇ = Φ̇(εij, αij, α̇ij)

The dissipation function for rate independent materials must be a homogeneous func-
tion of degree one in the rates since there is no characteristic time. From Euler’s theorem
for homogeneous functions:

Φ̇ =
∂Φ̇

∂α̇ij

α̇ij

Using the dissipation inequality (1):(
∂Φ̇

∂α̇ij

+
∂Ψ

∂αij

)
α̇ij =

(
σij −

∂Ψ

∂εij

)
ε̇ij

Since both observable and internal variables are independent of each other both sides
of this equation must be zero. The right side of the equation is clearly independent of
the strain rate, thus equal to zero:

σij =
∂Ψ

∂εij
(2bis)

However, the left side of the equation is dependent on the rate of internal variables, thus
one cannot proceed as previously. The principle of maximum dissipation was invoked
by Ziegler in order to satisfy the equation, in which case the left side is assumed to
equal to zero:

∂Φ̇

∂α̇ij

= − ∂Ψ

∂αij

(7)

This equation is also known as Ziegler’s postulate, where the dissipative stress (σd
ij) and

the quasi-conservative stress (σ̄ij) are defined to be:

σd
ij =

∂Φ̇

∂α̇ij

; σ̄ij = − ∂Ψ

∂αij

(8)

To ensure the positiveness of the dissipation function, it itself is postulated to be a
convex potential of the rate of internal variables, similar to the case for the potential
g. Moreover, to eliminate the rate of internal variables (α̇ij) from this function, the
Legendre transform of the dissipation is taken. Since it was already note that the the



dissipation function is a homogeneous function of degree one in the rate of internal
variables, this Legendre transform is singular (i.e. equal to zero).

w(σd
ij) = α̇ijσ

d
ij − Φ̇(α̇ij) = 0; where: α̇ij =

∂w

∂σd
ij

; σd
ij =

∂Φ̇

∂α̇ij

(9)

By taking the Legendre transform (9) the dissipative stress has the same expression as in
(8). Since the functionw is equal to zero it can be determined to within an undetermined
multiplier (λ̇):

w(σd
ij) = λ̇F (σd

ij)

This function F represents the yield function on the dissipative stress space; from (9)
the internal variable is:

αij = λ̇
∂F

∂σd
ij

(10)

Note that the internal variable is normal (i.e associated) to the yield function in dissi-
pative stress space, which is a result of the Legendre transform performed in (9). In the
case of a decoupled response, the free energy could be decomposed, similarly to (3);
thus the quasi-conservative stress from (8) is:

σ̄ij = −
(
∂Ψe

∂αij

+
dΨp

dαij

)
Define, the shift stress (σs

ij):

σs
ij =

dΨp

dαij

Using Ziegler’s postulate (7), the dissipative stress is then:

σd
ij = σ̄ij = σij − σs

ij (11)

This equation is used to map the yield function from the dissipative stress space (F )
into the true stress space, thus defining the yield function in true stress space (f ):

f(σij − σs
ij) = 0

DISCUSSION

Under the assumption of a decoupled response (3), the free energy function was
divided into its elastic and plastic components. The elastic component represents the
energy that can be recovered after loading has been retrieved, and the stress is derived
from it in the same manner as in the hyperelastic theory. The plastic component of the
free energy is also termed frozen energy or stored energy, and allows the introduction
of the thermodynamic force and the shift stress, under the French school approach
and Ziegler’s approach, respectively. The implications of the stored energy on each
approach are discussed below by applying them to classical models.



Linear kinematic hardening - Von Mises 1D model

First, the case of kinematic hardening will be examined.

French school approach
According to this approach two functions are to be postulated: Free energy (Ψ) and a
convex potential (g).

Ψ = Ψe(ε− εp) + Ψp(ξ) =
E

2
(ε− εp)2 +

1

2
Hξ2; g = f = |σ − χ| − Yo = 0

Where E is the Young’s modulus and the yield stress is Yo, the stress and thermody-
namic force are:

σ =
∂Ψ

∂ε
= E(ε− εp); χ =

∂Ψp

∂χ
= Hξ

Notice that in this approach we are yet to define the internal variable (ξ). The evolution
rule and flow rule are:

ε̇p = λ̇
∂g

∂σ
= λ̇ sgn(σ − χ); ξ̇ = −λ̇ ∂g

∂χ
= λ̇ sgn(σ − χ) = ε̇p

An associated flow rule was considered (i.e g = f ). This means that the direction of
stress and plastic strain rate are identical in one dimension; this could be expressed as:
(sgn(σ − χ) = sgn(ε̇p)), which in addition to (4) yields the rate of dissipation:

Φ̇ = (σ − χ)ε̇p = Yo|ε̇p|
Ziegler’s approach
In this case the functions to be postulated are: Free energy and the rate of dissipation
function:

Ψ =
E

2
(ε− εp)2 +

1

2
H(εp)2; Φ̇ = Yo|ε̇p|

The stresses are:

σ =
∂Ψ

∂ε
= E(ε− εp); σs =

∂Ψp

∂εp
= Hεp; σd =

∂Φ̇

∂εp
= Yo sgn(ε̇p)

Eliminating the rate of the internal variable from the expression of the dissipative stress
yields the yield function, which was achieved by the Legendre transform (9). According
to (10), in dissipative space the associate flow rule holds (i.e sgn(ε̇p) = sgn(σd)); thus,
the yield function on dissipative stress is:

F = |σd| − Yo = 0

And from (11), the yield function in true stress space (f ):

f = |σ − σs| − Yo = 0

The rate of the internal variable is:

ε̇p = λ̇
∂F

∂σd
= λ̇ sgn(σd) = λ̇ sgn(σ − σs)

From the above, we conclude that, when kinematic hardening is modeled, the mechan-
ical responses as derived using both approaches are identical. Moreover, the stored
energy and dissipation are exactly the same in both cases as well.



Linear isotropic hardening - Von Mises 1D model

Next, the case of isotropic hardening will be examined.

French school approach
The free energy (Ψ) and a convex potential (g) are postulated:

Ψ =
E

2
(ε− εp)2 +

1

2
Hξ2; g = f = |σ| − χ− Yo = 0

The stresses and thermodynamic force are:

σ =
∂Ψ

∂ε
= E(ε− εp); χ =

∂Ψp

∂χ
= Hξ

The evolution rule and flow rule are:

ε̇p = λ̇ sgn(σ); ξ̇ = λ̇

Since we are considering associated flow rule (i.e g = f ) the direction of the stress and
the plastic strain rate are the same, thus:

ξ̇ = |ε̇p|

Ziegler’s approach
Here, let the free energy and the rate of dissipation function be:

Ψ =
E

2
(ε− εp)2; Φ̇ = (Yo +Hεp)|ε̇p|

The stresses are:

σ = E(ε− εp); σs = 0; σd = (Yo +Hεp) sgn(ε̇p)

We proceed identically as before, eliminating the rate of internal variable from the
dissipation function. Furthermore, since the shift stress is zero, the yield functions in
both spaces have the same expression:

F = |σd| −Hεp − Yo = 0; f = |σ| −Hεp − Yo = 0

The rate of the internal variable is:

ε̇p = λ̇ sgn(σd) = λ̇ sgn(σ)

It is clear that the mechanical responses derived by these two approaches are identical;
however, unlike to the case of kinematic hardening, differences emerge in the expres-
sions for the stored energy and the dissipation rate. The French school approach, as
for kinematic hardening, considers that there exists a part of the plastic work done to
be transformed into stored energy (i.e. Ψp 6= 0), and the rest is dissipated. The stored



energy in theory could be retrieved under unloading; however, we observe that the in-
ternal variable rate (ξ̇) is equal to the absolute value of the plastic strain rate. Hence,
the internal variable rate under any loading condition is always positive. Therefore, the
stored energy always accumulates and it cannot be retrieved, as opposed to the case of
kinematic hardening in which the stored energy is recovered (Besson et al. 2009). In
contrast, in Ziegler’s approach, there is no stored energy involved in isotropic harden-
ing (i.e all the plastic work done is dissipated). Such a condition in the French school
approach is only observed in rigid hardening (Ottosen and Ristinmaa 2005). It is also
worth noting that the dissipation function used in the isotropic case is also dependent on
the plastic strain, not only its rate. The hierarchy of plastic models for both approaches
is presented in Table 1, which has been partially modified from Houlsby and Puzrin
(2007).

Table 1. Hierarchy of plastic models
Approach French school Ziegler’s

Hardening type Free energy Free energy Dissipation
Perfectly Plastic Ψe(εij − εpij) Ψe(εij − αij) Φ̇(α̇ij)

Isotropic Ψe(εij − εpij) + Ψp(ξi) Ψe(εij − αij) Φ̇(αij, α̇ij)

Kinematic Ψe(εij − εpij) + Ψp(ξi) Ψe(εij − αij) + Ψp(αij) Φ̇(α̇ij)

Mixed Ψe(εij − εpij) + Ψp(ξi) Ψe(εij − αij) + Ψp(αij) Φ̇(αij, α̇ij)

Modified cam-clay model (MCC)

The modified cam-clay model is probably the single most important model in
soil mechanics as it has been widely used in the development of many advanced mod-
els. Although initially intended for fully saturated materials it has also been extended
to partially saturated materials. As is well known, MCC is a plastic volumetric strain
isotropic hardening model, i.e the plastic volumetric strain (εpv) is the hardening vari-
able, and the preconsolidation pressure (pc) is the hardening parameter.

French school approach
As stated above the hardening parameter is pc which under this approach is equivalent
to the thermodynamic force (χ = pc). Furthermore, the internal variable now is set to
be the plastic volumetric strain (ξ = εpv), thus pc(εpv). The free energy and the potential
function with an associated flow rule are:

Ψ = Ψe +
1

2

∫
pc(ε

p
v) dεpv ; g = f = q2 +M2p2 −M2ppc = 0

Let us focus on the flow rule and evolution rule:

ε̇pv = λ̇
∂g

∂p
= λ̇M2(2p− pc); ξ̇ = −λ̇ ∂g

∂pc
= λ̇M2p

By no means can the expressions for the rate of volumetric plastic strain and the internal
variable be equal. Furthermore, there is no expression for g that would satisfy: ξ = εpv;



and at the same time satisfy the associated flow rule. Under this circumstance Ulm and
Coussy (2003, p. 282) indicated that it is not always required to postulate the same
convex function for both flow rule and evolution rule. Independent functions (e.g. g
and h) could be used, so long as that they are convex with respect to their argument(s)
to ensure the positiveness of (1). In this way one could have an associated flow rule
(g = f ) and non-associated hardening rule (h 6= f). Based on this, the new function h
is required to be:

ξ̇ = −λ̇ ∂h
∂pc
≡ ε̇pv = λ̇M2 (2p− pc) =⇒ h =

M2

2
(2p− pc)2

And the governing equations are now:

Ψ = Ψe +
1

2

∫
pc(ε

p
v) dεpv ; g = f = q2 +M2p2 −M2ppc = 0; h =

M2

2
(2p− pc)2

Ziegler’s approach
The dissipation function and free energy are:

Ψ = Ψe +
1

2

∫
pc(ε

p
v) dεpv ; Φ =

1

2
pc(ε

p
v)
(√

(ε̇pv)2 +M2(ε̇ps)2
)

Collins and Houlsby (1997) showed that in order to be able to develop the modified
Cam-clay model it is required to use a shift stress such that it will ”shift” the yield sur-
face in the deviatoric - mean effective stress plane (p−q) to the origin. They also showed
that it was possible to generate it, simply by adding the stored energy to the dissipation
function. In any case; however, not all the plastic work is dissipated, a fraction of it will
be stored. This appears not to be inline with the general theory for Ziegler’s approach
which states that for an isotropic hardening model all the plastic work is dissipated,
thus, the stored energy is zero. The governing equations presented above resemble the
case of mixed hardening instead of the isotropic hardening as presented in table 1.

CONCLUSION

Two widely used approaches which apply the laws of thermodynamics in con-
tinuum mechanics have been examined in the context of classical models. On the
outline the French school’s approach is simpler as it resembles more to the classical
elastoplastic theory whereas in Ziegler’s approach the use of Legendre transforms adds
some extra difficulties. Conceptually, there are two main differences worth noting when
adopting one or the other approach in the development of constitutive models for soils:
a) how the stored energy is used and b) how the yield function is defined. For example,
while in the French school’s approach stored energy is generated whatever the type of
hardening (i.e. isotropic or kinematic), in Ziegler’s approach only energy is only stored
during kinematic hardening. The distinct approaches also lead to different ways to de-
fine the yield function, which is derived from the dissipation function in the Ziegler’s
approachs case, while in the French school’s approach it is usually simply taken equal
to the potential function, the only restriction being that this potential function should be
convex. Applying the different approaches to developing the classical Modified Cam



Clay model further shows that it cannot be done without modification either in the form
for a non-associated evolution rule, or by using a mixed hardening model, thus high-
lighting the deviation of the classical model from thermodynamics rules.
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