9 research outputs found

    Network analysis of spreading of dengue, Zika and chikungunya in the state of Bahia based on notified, confirmed and discarded cases

    Get PDF
    Despite successful results of using complex networks to model and characterize the spread of dengue cases, works to date have mainly used data from primarily reported cases, without further consideration whether they were later confirmed or not. On the other hand, a study of the interdependence of confirmed and discarded cases of arboviruses have emphasized that the co-circulation of three arboviruses—dengue, Zika and chikungunya—may have led to false diagnoses due to several similarities in the early symptoms of the three diseases on acute phase. This implies that case notifications of one disease could be confirmed cases of others, and that discarded cases must be taken into account to avoid misinterpretations of the phenomenon. In this work we investigated the consequences of including information from discarded and confirmed cases in the analysis of arbovirus networks. This is done by firstly evaluating the possible changes in the networks after removing the discarded cases from the database of each arbovirus, and secondly by verifying the cross-relationship of the indices of the networks of confirmed and discarded cases of arboviruses. As will be detailed later on, our results reveal changes in the network indices when compared to when only confirmed cases are considered. The magnitudes of the changes are directly proportional to the amount of discarded cases. The results also reveal a strong correlation between the average degree of the networks of discarded cases of dengue and confirmed cases of Zika, but only a moderate correlation between that for networks of discarded cases of dengue and confirmed cases of chikungunya. This finding is compatible with the fact that dengue and Zika diseases are caused by closely related flaviviruses, what is not the case of the chikungunya caused by a togavirus

    Complex network analysis of arboviruses in the same geographic domain: Differences and similarities.

    Get PDF
    Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting humans worldwide and therefore considered a public health problem with global and diverse socio-economic impacts. Understanding how they spread within and across different regions is necessary to devise strategies to control and prevent new outbreaks. Complex network approaches have widespread use to get important insights on several phenomena, as the spread of these viruses within a given region. This work uses the motif-synchronization methodology to build time varying complex networks based on data of registered infections caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The resulting network sets capture new information on the spread of the diseases that are related to the time delay in the synchronization of the time series among different municipalities. Thus the work adds new and important network-based insights to previous results based on dengue dataset in the period 2001-2016. The most frequent synchronization delay time between time series in different cities, which control the insertion of edges in the networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungunya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the time delay for synchronization between the corresponding time series. The same behavior was not observed for dengue, first reported in the region back in 1986, either in the previously 2001-2016 based results or in the current work. These results show that, as the number of outbreaks accumulates, different strategies must be adopted to combat the dissemination of arbovirus infections

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    A review of the biology, ecology, behavior and conservation status of the dusky grouper, Epinephelus marginatus (Lowe 1834)

    No full text
    corecore