58 research outputs found

    The impact of COVID-19 on children with autism spectrum disorder

    Get PDF
    Introduction. Children with autism spectrum disorder (ASD) often experience changing routines as a major challenge. For that reason, the need for adaptation during COVID-19 pandemic may have brought major problems to families with children with this pathology. Aim. To explore how children with ASD and their parents experienced the social isolation during COVID-19 outbreak period. Subjects and methods. We conducted an observational, cross-sectional and analytical study. We applied an anonymous questionnaire that included children's demographic and clinical characteristics, along with the impact of the COVID-19 outbreak in different aspects of family's daily life. Results. Out of 99 questionnaires obtained, 43 were related to children with ASD and 56 to control group. Children with ASD predominantly had changes in behavior, while children from control group mostly found no changes. The majority of parents of ASD children reported a negative impact in emotion management against those in control group reporting mostly positive or no impact. Caregivers reported higher mean scores of anxiety levels in themselves than in their children. ASD children and their parents had higher levels of anxiety than healthy ones. In the group with ASD, children that did not maintain routines had higher mean levels of anxiety than children that maintained routines. Conclusion. Our results show a potential important psychological impact of the COVID-19 pandemic not only in children with neurodevelopmental disorders but in their caregivers as well. Physicians must be prepared for the post-pandemic surveillance of mental disorders among families

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    Attention-deficit/hyperactivity disorder and the COVID-19 Pandemic

    Get PDF

    Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation

    Get PDF
    T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and BhThe40, as part of the core regulatory network governing Th2 helper cell fates

    A Confidence Interval for the Wallace Coefficient of Concordance and Its Application to Microbial Typing Methods

    Get PDF
    Very diverse research fields frequently deal with the analysis of multiple clustering results, which should imply an objective detection of overlaps and divergences between the formed groupings. The congruence between these multiple results can be quantified by clustering comparison measures such as the Wallace coefficient (W). Since the measured congruence is dependent on the particular sample taken from the population, there is variability in the estimated values relatively to those of the true population. In the present work we propose the use of a confidence interval (CI) to account for this variability when W is used. The CI analytical formula is derived assuming a Gaussian sampling distribution and recurring to the algebraic relationship between W and the Simpson's index of diversity. This relationship also allows the estimation of the expected Wallace value under the assumption of independence of classifications. We evaluated the CI performance using simulated and published microbial typing data sets. The simulations showed that the CI has the desired 95% coverage when the W is greater than 0.5. This behaviour is robust to changes in cluster number, cluster size distributions and sample size. The analysis of the published data sets demonstrated the usefulness of the new CI by objectively validating some of the previous interpretations, while showing that other conclusions lacked statistical support

    An Unexpected Location of the Arginine Catabolic Mobile Element (ACME) in a USA300-Related MRSA Strain

    Get PDF
    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024-ST8) is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing of the cassette revealed that the entire J3 region had no homology to published SCCmec IVa. Within the J3 region of M1 was a 1705 bp sequence only similar to a sequence in S. haemolyticus strain JCSC1435 and 2941 bps with no homology found in GenBank. In addition to the usual direct repeats (DR) at each extremity of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1) and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299) showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between staphylococcal species

    Staphylococcus aureus reservoirs and transmission routes in a Portuguese Neonatal Intensive Care Unit: a 30-month surveillance study.

    Get PDF
    Although Staphylococcus aureus is a major cause of outbreaks in neonatal intensive care units (NICUs), there are no studies on the epidemiology of S. aureus isolates responsible for infection in Portuguese NICUs. Between July 2005 and December 2007, a total of 54 methicillin susceptible S. aureus (MSSA) isolates were recovered from 16 infected infants, parents, health care workers (HCWs), and the environment in a level III NICU. Isolates were characterized by pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing. Virulence determinants were detected by multiplex polymerase chain reaction. Three major MSSA clones were endemic in the NICU, representing 70% (n=38) of the isolates: PFGE type A-ST5 (n=17); type B-ST30 (n=12); and type C-ST1 (n=9). Leukotoxins and hemolysins were present in all isolates, although none of them carried PVL. HCWs, plastic folders protecting clinical files, and mothers' nipples were identified as potential reservoirs and/or vehicles of dissemination of S. aureus. Consequently, additional infection control measures were implemented in this NICU

    The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution

    Get PDF
    We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http:// pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium’s evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements
    corecore