26 research outputs found

    Intermixing between HfO2 and GeO2 films deposited on Ge(001) and Si(001) : role of the substrate

    Get PDF
    Thermally driven atomic transport in HfO2 /GeO2/substrate structures on Ge 001 and Si 001 was investigated in N2 ambient as function of annealing temperature and time. As-deposited stacks showed no detectable intermixing and no instabilities were observed on Si. On Ge, loss of O and Ge was detected in all annealed samples, presumably due to evolution of GeO from the GeO2 /Ge interface. In addition, hafnium germanate is formed at 600 °C. Our data indicate that at 500 °C and above HfO2 /GeO2 stacks are stable only if isolated from the Ge substrate

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    Compositional stability of hafnium aluminates thin films deposited on Si by atomic layer deposition

    Get PDF
    We have used nuclear reaction analyses and Rutherford backscattering spectrometry to investigate quantitatively the compositional stability of hafnium aluminate thin films deposited on Sis001d by atomic layer deposition using HfCl4/H2O and AlsCH3d3/H2O precursors. It was found that increasing Al/Hf deposition cycles ratio leads to increasing oxygen deficiency in the as-deposited films as well as to increasing metal losses sup to ,15%d from the films after rapid thermal annealing at 1000 °C. Furthermore, isotopic substitution experiments, showed that incorporation of oxygen from the gas phase is eased in the cases where deposition conditions failed to supply enough oxygen to complete oxides stoichiometry

    Atomic transport and integrity of Al/sub 2/O/sub 3(2.0 nm)/HfO/sub 2/(2.5 nm) gate stacks on Si

    No full text
    The integrity of Al2O3 2.0 nm /HfO2 2.5 nm /SiO2 1 nm /Si 001 stacks after rapid thermal annealing at temperature up to 1025 °C was investigated. The structures were prepared by atomic layer deposition and atomic transport was accessed by profiling all elements in the system with subnanometric depth resolution, using medium and low energy ion scattering and narrow resonant nuclear reaction profiling. Al migration toward the stack/Si interface, Al loss by desorption from the surface, and Hf transport across the Al2O3 film layer toward the outermost surface were observed. The loss of oxygen from the stack is also noticeable, most probably caused by compound dissociation and desorption of oxygen containing species. The possible detrimental effects on device electrical properties of the observed presence of Hf at the outermost surface of the dielectric stack and of Al at the dielectric/Si interface are discussed

    Atomic transport and integrity of Al/sub 2/O/sub 3(2.0 nm)/HfO/sub 2/(2.5 nm) gate stacks on Si

    No full text
    The integrity of Al2O3 2.0 nm /HfO2 2.5 nm /SiO2 1 nm /Si 001 stacks after rapid thermal annealing at temperature up to 1025 °C was investigated. The structures were prepared by atomic layer deposition and atomic transport was accessed by profiling all elements in the system with subnanometric depth resolution, using medium and low energy ion scattering and narrow resonant nuclear reaction profiling. Al migration toward the stack/Si interface, Al loss by desorption from the surface, and Hf transport across the Al2O3 film layer toward the outermost surface were observed. The loss of oxygen from the stack is also noticeable, most probably caused by compound dissociation and desorption of oxygen containing species. The possible detrimental effects on device electrical properties of the observed presence of Hf at the outermost surface of the dielectric stack and of Al at the dielectric/Si interface are discussed

    Hemodynamic Evaluation of the Right Heart-Pulmonary Circulation Unit in Patients Candidate to Transjugular Intrahepatic Portosystemic Shunt

    No full text
    In Europe, liver cirrhosis represents the fourth-most common cause of death, being responsible for 170,000 deaths and 5500 liver transplantations per year. The main driver of its decompensation is portal hypertension, whose progression radically changes the prognosis of affected patients. Transjugular intrahepatic portosystemic shunt (TIPS) is one of the main therapeutic strategies for these patients as it reverts portal hypertension, thus improving survival. However, the coexistence of portal hypertension and pulmonary hypertension or heart failure is considered a contraindication to TIPS. Nevertheless, in the latest guidelines, the definition of heart failure has not been specified. It is unclear whether the contraindication concerns the presence of clinical signs and symptoms of heart failure or hemodynamic changes in the right heart-pulmonary circulation. Moreover, data about induced right heart volume overload after TIPS and the potential development of heart failure and pulmonary hypertension is currently scanty and controversial. In this article we revise this issue in finding predictors of cardiac performance after TIPS procedure. Performing a fluid challenge during right heart catheterization might be a promising expedient to test the adaptation of the right ventricle to a sudden increase in preload in the first few months after TIPS. This test may unmask a potential cardiac inability to sustain the hemodynamic load after TIPS, allowing for a clearer definition of heart failure and, consequently, a more robust indication to TIPS

    Intermixing between HfO2 and GeO2 films deposited on Ge(001) and Si(001) : role of the substrate

    Get PDF
    Thermally driven atomic transport in HfO2 /GeO2/substrate structures on Ge 001 and Si 001 was investigated in N2 ambient as function of annealing temperature and time. As-deposited stacks showed no detectable intermixing and no instabilities were observed on Si. On Ge, loss of O and Ge was detected in all annealed samples, presumably due to evolution of GeO from the GeO2 /Ge interface. In addition, hafnium germanate is formed at 600 °C. Our data indicate that at 500 °C and above HfO2 /GeO2 stacks are stable only if isolated from the Ge substrate
    corecore