11 research outputs found

    Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence

    No full text
    Enterococci are often used in probiotics but can also cause nosocomial infections. As such, enterococcal consumption may have beneficial health effects, but a thorough evaluation of virulence absence and risk of antibiotic resistance spread is needed at the strain level. This article reviewed ten online health product shopping websites in the US. On these websites, 23 probiotic products using enterococci were found across 12 companies. In addition, this article reviewed studies that demonstrated the probiotic potential of enterococcal consumption (e.g., gastrointestinal and respiratory disease, hyperlipidemia alleviation, as well as infection prevention). To investigate the safety aspects of enterococci, the present work examined studies evaluating virulence factors and antibiotic resistance. Furthermore, this article assessed research that explored these virulent factors, specifically in probiotics containing enterococci, as well as the potential transfer mechanism of their antibiotic resistance. Based on reviewed data, enterococcal probiotic consumption has been proven beneficial for conditions or symptoms of multiple diseases without any apparent adverse effects. However, due to the plasmid- or transposon-mediated gene transfer ability of enterococci, surveillance monitoring and further studies regarding enterococcal consumption are warranted. Future studies that identify enterococcal strains safe to use in probiotics without virulence factors and antibiotic resistance are imperative for evidence-based decisions by health organizations and government agencies

    Identification of Pathogenic Bacteria from Public Libraries via Proteomics Analysis

    No full text
    Hazardous organisms may thrive on surfaces that are often exposed to human contact, including children’s library books. In this study, swab samples were taken from 42 children’s books collected from four public libraries in Texas and California. Samples were then cultivated in brain–heart infusion (BHI) medium and then in Luria broth (LB) medium containing either ampicillin or kanamycin. All 42 samples (100%) were positive for bacterial growth in normal BHI medium. Furthermore, 35 samples (83.3%) and 20 samples (47.6%) in total were positive in LB medium containing ampicillin or kanamycin, respectively. Bacterial populations were then identified in samples using an Orbitrap Fusion™ Tribrid ™ mass spectrometer, a state-of-the-art proteomic analysis tool. Identified bacterial species grown in ampicillin included Bacillus, Acinetobacter, Pseudomonas, Staphylococcus, Enterobacter, Klebsiella, Serratia, Streptococcus, Escherichia, Salmonella, and Enterococcus. In contrast, identified bacteria grown in kanamycin included Staphylococcus, Streptococcus, Enterococcus, and Bacillus. The presences of pathogenic bacteria species were also confirmed. The results of this study warrant follow up studies to assess the potential health risks of identified pathogens. This study demonstrates the utility of proteomics in identifying environmental pathogenic bacteria for specific public health risk evaluations

    A rigorous electrochemical ammonia electrolysis protocol with in operando quantitative analysis

    No full text
    Ammonia has emerged as an attractive liquid fuel for hydrogen production owing to its facile transportation, high capacity of hydrogen storage, and ecofriendly environmental products (N<INF>2</INF> and H<INF>2</INF>). Moreover, the electrolysis of ammonia to produce nitrogen and hydrogen only requires an external voltage of 0.06 V theoretically, which is much lower than the energy needed for water electrolysis (1.23 V). In this study, we propose a well-established procedure using in operando gas chromatography that enables us to reliably compare and evaluate the new catalyst for ammonia oxidation. With the protocol, we could distinguish in detail the competitive oxidation reaction between the ammonia oxidation and oxygen evolution reactions with real-time monitoring. Using a flower-like electrodeposited Pt catalyst, we have efficiently produced hydrogen with less power consumption of 734 L<INF>H<INF>2</INF></INF> kW h<SUP>-1</SUP>, which is significantly lower than that of the water-splitting process (242 L<INF>H<INF>2</INF></INF> kW h<SUP>-1</SUP>). The use of this rigorous protocol should help to evaluate the practical performances for ammonia oxidation, thus enabling the field to focus on viable pathways towards the practical electrochemical oxidation of ammonia to hydrogen

    Shifting From Active to Passive Monitoring of Alzheimer Disease: The State of the Research

    No full text
    ABSTRACT Most research using digital technologies builds on existing methods for staff‐administered evaluation, requiring a large investment of time, effort, and resources. Widespread use of personal mobile devices provides opportunities for continuous health monitoring without active participant engagement. Home‐based sensors show promise in evaluating behavioral features in near real time. Digital technologies across these methodologies can detect precise measures of cognition, mood, sleep, gait, speech, motor activity, behavior patterns, and additional features relevant to health. As a neurodegenerative condition with insidious onset, Alzheimer disease and other dementias (AD/D) represent a key target for advances in monitoring disease symptoms. Studies to date evaluating the predictive power of digital measures use inconsistent approaches to characterize these measures. Comparison between different digital collection methods supports the use of passive collection methods in settings in which active participant engagement approaches are not feasible. Additional studies that analyze how digital measures across multiple data streams can together improve prediction of cognitive impairment and early‐stage AD are needed. Given the long timeline of progression from normal to diagnosis, digital monitoring will more easily make extended longitudinal follow‐up possible. Through the American Heart Association–funded Strategically Focused Research Network, the Boston University investigative team deployed a platform involving a wide range of technologies to address these gaps in research practice. Much more research is needed to thoroughly evaluate limitations of passive monitoring. Multidisciplinary collaborations are needed to establish legal and ethical frameworks for ensuring passive monitoring can be conducted at scale while protecting privacy and security, especially in vulnerable populations

    Table_1_Digital neuropsychological measures by defense automated neurocognitive assessment: reference values and clinical correlates.DOCX

    No full text
    IntroductionAlthough the growth of digital tools for cognitive health assessment, there’s a lack of known reference values and clinical implications for these digital methods. This study aims to establish reference values for digital neuropsychological measures obtained through the smartphone-based cognitive assessment application, Defense Automated Neurocognitive Assessment (DANA), and to identify clinical risk factors associated with these measures.MethodsThe sample included 932 cognitively intact participants from the Framingham Heart Study, who completed at least one DANA task. Participants were stratified into subgroups based on sex and three age groups. Reference values were established for digital cognitive assessments within each age group, divided by sex, at the 2.5th, 25th, 50th, 75th, and 97.5th percentile thresholds. To validate these values, 57 cognitively intact participants from Boston University Alzheimer’s Disease Research Center were included. Associations between 19 clinical risk factors and these digital neuropsychological measures were examined by a backward elimination strategy.ResultsAge- and sex-specific reference values were generated for three DANA tasks. Participants below 60 had median response times for the Go-No-Go task of 796 ms (men) and 823 ms (women), with age-related increases in both sexes. Validation cohort results mostly aligned with these references. Different tasks showed unique clinical correlations. For instance, response time in the Code Substitution task correlated positively with total cholesterol and diabetes, but negatively with high-density lipoprotein and low-density lipoprotein cholesterol levels, and triglycerides.DiscussionThis study established and validated reference values for digital neuropsychological measures of DANA in cognitively intact white participants, potentially improving their use in future clinical studies and practice.</p
    corecore