642 research outputs found

    Limit analysis of conical and parabolic domes based on semi-analytical solution

    Get PDF
    The evaluation of limit loads of masonry domes has received increasing interest especially due to the importance of historical buildings where domes mainly are one of the most relevant structures. The limit design is used to obtain the safety assessment and the design guidance for restoration and transformation toward preservation and reuse of historical heritage. In the following paper, we present a formulation of the limit analysis based on the semi-analytical approach that starts on Melan's theorem. The self-equilibrated Melan's residual is obtained through the discretization of the analytical form of the equilibrium equation of the spherical dome. The procedure provides a finite-dimensional map of the eigenstress of the structure. Furthermore, the superimposition of the elastic solution to actual loads, obtained by finite element calculation, completes the admissible stress evaluation. Such amissible stress is introduced into the maximization algorithm, based on the lower bound theorem, which results in the collapse load. The same approach is used to get the safety assessment under prescribed load that allows checking the safety of prescribed load pattern and geometry

    Functionally graded plate fracture analysis using the field boundary element method

    Get PDF
    This paper describes the Field Boundary Element Method (FBEM) applied to the fracture analysis of a 2D rectangular plate made of Functionally Graded Material (FGM) to calculate Mode I Stress Intensity Factor (SIF). The case study of this Field Boundary Element Method is the transversely isotropic plane plate. Its material presents an exponential variation of the elasticity tensor depending on a scalar function of position, i.e., the elastic tensor results from multiplying a scalar function by a constant taken as a reference. Several examples using a parametric representation of the structural response show the suitability of the method that constitutes a Stress Intensity Factor evaluation of Functionally Graded Materials plane plates even in the case of more complex geometries

    Discovery of monoacylglycerol lipase (MAGL) inhibitors based on a pharmacophore-guided virtual screening study

    Get PDF
    Monoacylglycerol lipase (MAGL) is an important enzyme of the endocannabinoid system that catalyzes the degradation of the major endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL is associated with pathological conditions such as pain, inflammation and neurodegenerative diseases like Parkinson's and Alzheimer's disease. Furthermore, elevated levels of MAGL have been found in aggressive breast, ovarian and melanoma cancer cells. Due to its different potential therapeutic implications, MAGL is considered as a promising target for drug design and the discovery of novel small-molecule MAGL inhibitors is of great interest in the medicinal chemistry field. In this context, we developed a pharmacophore-based virtual screening protocol combined with molecular docking and molecular dynamics simulations, which showed a final hit rate of 50% validating the reliability of the in silico workflow and led to the identification of two promising and structurally different reversible MAGL inhibitors, VS1 and VS2. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent MAGL inhibitors

    Symmetry breaking and effects of nutrient walkway in time-dependent bone remodeling incorporating poroelasticity

    Get PDF
    © 2022. The Author(s).Bone is an extraordinary biological material that continuously adapts its hierarchical microstructure to respond to static and dynamic loads for offering optimal mechanical features, in terms of stiffness and toughness, across different scales, from the sub-microscopic constituents within osteons-where the cyclic activity of osteoblasts, osteoclasts, and osteocytes redesigns shape and percentage of mineral crystals and collagen fibers-up to the macroscopic level, with growth and remodeling processes that modify the architecture of both compact and porous bone districts. Despite the intrinsic complexity of the bone mechanobiology, involving coupling phenomena of micro-damage, nutrients supply driven by fluid flowing throughout hierarchical networks, and cells turnover, successful models and numerical algorithms have been presented in the literature to predict, at the macroscale, how bone remodels under mechanical stimuli, a fundamental issue in many medical applications such as optimization of femur prostheses and diagnosis of the risk fracture. Within this framework, one of the most classical strategies employed in the studies is the so-called Stanford's law, which allows uploading the effect of the time-dependent load-induced stress stimulus into a biomechanical model to guess the bone structure evolution. In the present work, we generalize this approach by introducing the bone poroelasticity, thus incorporating in the model the role of the fluid content that, by driving nutrients and contributing to the removal of wastes of bone tissue cells, synergistically interacts with the classical stress fields to change homeostasis states, local saturation conditions, and reorients the bone density rate, in this way affecting growth and remodeling. Through two paradigmatic example applications, i.e. a cylindrical slice with internal prescribed displacements idealizing a tract of femoral diaphysis pushed out by the pressure exerted by a femur prosthesis and a bone element in a form of a bent beam, it is highlighted that the present model is capable to catch more realistically both the transition between spongy and cortical regions and the expected non-symmetrical evolution of bone tissue density in the medium-long term, unpredictable with the standard approach. A real study case of a femur is also considered at the end in order to show the effectiveness of the proposed remodeling algorithm.Peer reviewe

    New Synthetic Analogues of Natural Polyphenols as Sirtuin 1-Activating Compounds

    Get PDF
    NAD+-dependent deacetylase SIRT1 regulates many different biological processes, thus being involved in pathogenic conditions such as metabolic diseases, neurogenerative disorders and cancer. Notably, experimental evidence underlined that the activation of SIRT1 had promising cardioprotective effects. Consequently, many efforts have been so far devoted to finding new SIRT1 activators, both derived from natural sources or prepared by synthetic procedures. Herein, we discovered new SIRT1-activating derivatives, characterized by phenolic rings spaced by sulfur, nitrogen or oxygen-based central linkers. The newly synthesized derivatives were analyzed in enzymatic assays to determine their ability to activate SIRT1, as compared with that of resveratrol. Among the tested molecules, bisarylaniline compound 10 proved to be the most efficient SIRT1 activator. An evaluation of the effects caused by focused structural variations revealed that its para-hydroxy-substituted diphenyl moiety of 10 was the fundamental structural requirement for achieving good SIRT1 activation. Compound 10 was further investigated in ex vivo studies in isolated and perfused rat hearts submitted to ischemia/reperfusion (I/R), where it showed significant protection of the myocardium against I/R injury. Molecular modeling studies suggest the binding mode of 10 within SIRT1 in the presence of the p53-AMC peptide. Our findings reveal that this chemical scaffold may be used as the starting point to develop a new class of more potent SIRT1 activators as cardioprotective agents
    corecore