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A B S T R A C T   

The evaluation of limit loads of masonry domes has received increasing interest especially due to the importance 
of historical buildings where domes mainly are one of the most relevant structures. The limit design is used to 
obtain the safety assessment and the design guidance for restoration and transformation toward preservation and 
reuse of historical heritage. In the following paper, we present a formulation of the limit analysis based on the 
semi-analytical approach that starts on Melan’s theorem. The self-equilibrated Melan’s residual is obtained 
through the discretization of the analytical form of the equilibrium equation of the spherical dome. The pro-
cedure provides a finite-dimensional map of the eigenstress of the structure. Furthermore, the superimposition of 
the elastic solution to actual loads, obtained by finite element calculation, completes the admissible stress 
evaluation. Such amissible stress is introduced into the maximization algorithm, based on the lower bound 
theorem, which results in the collapse load. The same approach is used to get the safety assessment under 
prescribed load that allows checking the safety of prescribed load pattern and geometry.   

1. Introduction 

Masonry structures have been widely employed in the past centuries, 
due to masonry compression strength and long-time durability. Never-
theless, they are still part of a relevant research topic interest, because 
there are lots of aspects with great research interest nowadays. In fact, 
despite a strong compression resistance, masonry presents no tensile 
stress, which makes the study of this construction technique more 
singular. 

Masonry is characterized by many different behaviors that make 
standard modeling more complex such as anisotropy, heterogeneity, 
inelastic stress-strain law, and fragile rupture. Moreover, the process 
analysis has a significant indeterminacy due to complex 3D geometry. 

For these considerations and despite the complexity of the problem, 
the theory of plasticity, namely the limit analysis, can be a useful tool for 
the evaluation of the safety factor of structures and is widely used to 
assess the safety level of ancient and historical structures. The primary 
necessity in the limit analysis context is, therefore, to define the limit 
domain where to search for stress that does not cause the collapse in the 

structure. 
For these reasons, masonry has been the subject of numerous studies. 

A rigid-block approach can be found in Refs. [1,2] where masonry 
structure are studied according to limit equilibrium principles. Many 
other authors recently proposed a comprhensive study about limit 
equilibrium and limit analysis of masonry structures [3–6]. 

The present paper discusses a coupling between numerical and 
analytical solutions of loaded masonry structures, with reference to 
conical masonry arches, modeling the structure concerning Limit 
Analysis [7,8]. 

Applications of limit analysis for researching the collapse load and, 
in general, of masonry mechanical behavior can be found in the litera-
ture. Franciosi [9] and Breccolotti et al. [10] study the in-plane masonry 
arch bridges seismic capacity, Tempesta et al. [11] deal with masonry 
arches safety, and Coccia et al. [12] face cracked masonry portal frames 
and their in-plane collapse. Ghirlanda et al. determined the collapse 
behaviour under seismic loads for masonry domes [13,14] For circular 
masonry arches, static and kinematic approaches have been employed to 
study collapse induced by external dislocations [15–21]. A discrete 
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element approach [21,22] can be used to investigate the support set-
tlement. This approach is also employed to study masonry pointed vaults 
[23]. In Refs. [24,25] the minimum thickness of elliptical masonry 
arches is analyzed with a static approach. 

Aita et al. [26] investigate the load-bearing capacities and the me-
chanical response of masonry elliptical arches. In the present paper, a 
methodology for the study of no-tensile strength materials is adopted to 
evaluate the mechanical behavior both in the linear and nonlinear case. 
An example of this methodology has been discussed in Ref. [27] for 
parabolic domes. In the following, the use of spherical analytical solu-
tion mixed with FEM analysis for the case of catenary 
conic-approximated and the parabolic dome is discussed. 

2. Materials and method 

2.1. Introduction to limit analysis 

In this paper, the solution of domes of revolution [27] by using the 
equation of the shells [28] combined with lower bound theorem and 
FEM analysis has been described. 

A brief introduction of the lower bound theorem and the shell 
equations are reported as follows, focused on the identification of the 
relations for the compatibility domain. 

Let the structure be subjected to a set of volume and boundary forces 
fnand pn, n ∈ {1,2, …m}, a function of time. The mechanical time- 
depending response consists of the stress σ, and the strain ε. Time is 
the parameter of the incremental process purely, but no dynamical ef-
fects arise on the structure. Moreover, the load intensities belong to a 
limited domain; it is possible to express the loads’ variability by a 
multiplier k. The structure is made of not-tensile resistant (NTR) elastic- 
plastic standard material [29]. Namely, the stress-strain constitutive 
relation links the reversible strain to the stress if the stress belongs to the 
admissibility domain, K, and relates the permanent strain rate ε̇p to the 
stress when the stress and the stress increment both attain the domain 
boundary (Eqn 1). As usual, strain energy w and plastic potential π are 
introduced to formulate the constitutive low, moreover, we assume that 
the elastic energy and the plastic dissipation at the yield limit were 
positive. 

σ =
∂w
∂ε , σ ∈ interior (K)

ε̇p
= λ̇

∂π
∂σ, {σ, σ + dσ} ∈ ∂K

∂w
∂ε dε ≥ 0

∂π
∂σ dσ ≥ 0

(1) 

The procedure to calculate the limit load multiplier λ̇ has been based 
on the lower bound theorem in the form of Melan’s theorem that has 
been formulated for time-variable load history. The time-independent 
limit load results as a particular case of Melan’s theorem provided the 
actual stress increases monotonically. The solution is found in the space 
of eigenstress. To the scope, the stress is decomposed as follows (Eqn 2): 

σ = σe + σ0 (2)  

Where σ0 is the eigenstress, i.e., the self-equilibrated stress that has to be 
superimposed to the perfect elastic stress σe to get the actual stress σ. The 
actual residual stress belongs to the eigenstress set that constitutes the 
kernel of the equilibrium equation. The actual stress does satisfy the 
plastic compatibility conditions. 

In the following, we have assumed to use a generalized stress 
formulation where the stress has been described through its resultant 
and moment acting on the cross-sections of the structural element that 
has been discussed in detail in the next sections. In the proposed 
application, only axial and bending stress influence the safety of the 

structure since shear effects are assumed to be negligible due to the small 
thickness of the dome. 

At first, let us focus our attention on a one-dimensional structure 
constituting an arc to clarify the procedure. 

The rectangular cross-section’s dimensions are: h its height and b its 
width, in the case of a three-dimensional shell, one can take b = 1 and 
consider the stress per unit width. The structure bears distributed load. 
The internal forces,N, and M, are respectively the resultant and the 
resultant moment of the stress acting on the section. The forces acting on 
the cross-section are statically equivalent to a single force of magnitude 
N applied at the point C that is the center of thrust of the section. The line 
that connects all the centers of the cross-section along the axis of the 
structure is called the thrust line. 

The compatibility condition for the structure material can be speci-
fied through generalized stress considering the inequalities (3): 
⎧
⎪⎪⎨

⎪⎪⎩

N
bh

−
6M
bh2 < 0

N
bh

+
6M
bh2 < 0

⇔

⎧
⎨

⎩

hN − 6M < 0
hN + 6M < 0
0 < N

(3) 

The set of inequalities (3) are equivalent to that the center of thrust 
lays within the core of the cross-section of the arc that is located at the 
middle third of the section, i.e., − h

6 <
M
N < h

6. These limits correspond to 
no crack allowed, NCA condition. 

A more relaxed condition can be stated whether one admits that in 
some part in the cross-section the stress vanishes identically, say the 
section is cracked, although it still works. This latter case corresponds to 
the fact that the thrust line belongs to the cross-section at least (Eqn 4): 

h
2
<

M
N

<
h
2

(4) 

So that the compatibility inequalities in (3) can be rewritten as: 
⎧
⎨

⎩

hN − 2M < 0
hN + 2M < 0
0 < N

(5) 

These limits correspond to allowed cracks, CA condition. 
Further generalization of the formulation is obtained by comprising 

the case of tensile resistant materials, TR, σt
y ∕= 0. To get this general-

ization one can modify the right-hand side of the inequalities intro-
ducing the upper bound limit of the axial stress (Eqn 6). 

N0 = σt
yhb (6) 

Finally, the compatibility inequation becomes: 
⎧
⎨

⎩

hN − αM < βN0h
hN + αM < βN0h
N < βN0

(7)  

where 

α =

{
2 for  CA  condition
6 for  NCAcondition

β =

{
0 for  NTR  materials

N0 for  TR  materials

(8) 

The drawing in Fig. 1 represents the compatibility domain in N, M 
plane. The two cases of NTR and the tensile resistant material are rep-
resented. In the picture monotone loading cases are represented as a 
vector N-M. In the NTR case if N-M belongs to the domain, it will remain 
within the domain even if it is amplified indefinitely. Conversely, in the 
case of tensile resistant material if the N-M vector has its slope less than 
tanϕ the same case of NTR occurs, but when the slope of a vector N-M is 
greater than tanϕ, it satisfies the compatibility depending on its 
magnitude. 
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2.2. Self-equilibrated solutions for domes of revolution 

In this section, the equilibrium equations for a dome of revolution 
have been described. The solution of the homogeneous form of the dif-
ferential equation formalized in Timoshenko represents the domain of 
the eigenstress. In this section, the equilibrium equation for the dome of 
revolution is briefly recalled. Moreover, the equation’s specification to 
spherical domes is presented. The spherical dome model described is 
aimed to approximate parabolical domes as well by geometrical con-
struction. The procedure can recognize the spherical surface that fits the 
prescribed parabola and allows applying the spherical equations to pa-
rabolas too. 

Moreover, the equation of conical domes is derived by a limiting 
process starting from the equations of spheres. 

Let us consider a double curvature dome; to write the equilibrium 
equations a small element of surface, belonging to the middle plane of 
the dome, is considered Fig. 2. Sections a-b and c-d represent an infin-
itesimal portion of two meridian curves, and curves a-c and b-d, are the 
two parallel ones, that describe a shell of infinitesimal area. 

Ni, Ti and Mi are the generalized stresses per unit length, namely 
axial stress, shear, and bending moment acting on the meridian curves 
for i = 1, and on the parallel for i = 2 respectively. 

The equilibrium equation of the dome of revolution are the 

following: 

d(N1r)
dθ

− N2R1cosθ − T1r = − XR1r

N1r + N2R1sinθ +
d(T1r)

dθ
= ZR1r

d(M1r)
dθ

− M2R1cosθ − T1R1r = 0

(9) 

It can be seen that, due to the dome symmetry and cylindrical 
symmetry of the loads and the structure, the stresses are not dependent 
on the longitude ϕ so they are functions of the colatitude θ only. equa-
tion (9) can be simplified when referred to spherical domes under 
axially-symmetric loads, the radius r of the parallel curve, indeed, de-
pends on the colatitude as well: 

r=R1sinθ (10)  

That substituted into (8) furnishes the equations for spherical domes: 

d(N1R1sinθ)
dθ

− N2R1cosθ − T1R1sinθ = − XR2
1sinθ

N1R1sinθ + N2R1sinθ +
d(T1R1sinθ)

dθ
= ZR2

1sinθ

d(M1R1sinθ)
dθ

− M2R1cosθ − T1R2
1sinθ = 0

(11) 

The solution of equation (10) is sought by the superimposition of the 
general integral of its associated homogeneous and a particular solution 
of the inhomogeneous equation. The general integral of the associated 
homogeneous equation consists of the set of {N0

1,M0
1,T0

1 ,N0
2,M0

2} that is 
the set of the self-equilibrated stress solution of the following equations: 

d
(
N0

1 r
)

dθ
− N0

1 R1cosθ − T0
1 r = 0

N0
1 r + N0

1 R1sinθ +
d
(
T0

1 r
)

dθ
= 0

d
(
M0

1r
)

dθ
− M0

2R1cosθ − T0
1 R1r = 0

(12)  

2.2.1. Parabolic domes 
The equations of spherical domes can be extended to parabolic 

domes of revolution, provided one can approximate the parabolic me-
ridian curve with circumference arc as is briefly explained in Fig. 3. The 
figure refers to the SMF parabolic dome by Brunelleschi. The circular 
approximation of the dome middle surface allowed using the equation 
formulated for the spheres to paraboloids as well. The approximation 
requires the knowledge of the right geometry, i.e. the radius of the 
approximating sphere, R = R1, its actual ending and starting angles, α1 

Fig. 1. Compatibility domain.  

Fig. 2. Geometric parameters (a), an infinitesimal element of the dome (b), and generalized stress on an infinitesimal element (c).  
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and α2, and the position of the revolutionary axis of the dome with 
respect to the axis of the approximating sphere, x. The approximating 
circle is obtained through an optimization procedure between the two 
curves. In the actual case of the Brunelleschi dome, the numerical results 
have been presented in the next section. Following the proposed 
approximation, equation (11) are useful to formulate parabolic dome 
equilibrium. 

To get the desired equations one can assume the following expression 
for the values of the parallel radius: 

r =R1sinθ − x (13)  

2.2.2. Conical domes 
The case of conical domes can be derived starting from equation (8) 

considering that the curvature radius of the meridian approaches in-
finity Fig. 4. 

The sought equations are formally derived posing dθ = dx/R1 
, as an 

example, the first of (8), modified according to this position is reported 
hereafter: 

d(N1r)
dx

dx
R1

R1dϕ − N2R1cosθ
dx
R1

dϕ − T1rcosθ
dx
R1

dϕ= 0 (14) 

Finally, a limit is taken for dx/R1
→0, resulting in: 

d(N1r)
dx

− N2cosθ + Xr = 0 − N2R1sinθ −
d(T1r)

dx
+ Zr = 0

d(M1r)
dx

− M2cosθ − T1r = 0

(15) 

As the last step, one has to highlight the dependence of the me-
chanical quantities of the colatitude θ in explicit, resulting in the 
following conical domes equilibrium equations: 

d(N1r)
dθ

dθ
dx

− N2cosθ = 0 − N2sinθ −
d(T1r)

dθ
dθ
dx

= 0

d(M1r)
dθ

dθ
dx

− M2cosθ − T1r = 0

(16) 

It has to be recalled that in conical domes the radius of the parallel is 
a function of the colatitude as well, in particular, the actual radius has 
the following expression: 

r(θ)=
rmax

1 + ctanθ
h (rmax − rmin)

(17)  

where the maximum radius and the minimum radius are rmax and rmin 
respectively and h is the height of the cone. 

2.2.3. Numerical discretization 
A set of shape functions is used to pursue the numerical approxi-

mation of the solution of equation (10). They were part of the set of 
polynomials of degree n, and depend on the colatitudes angle θ: 

Sn(θ) =
[

θ0, θ1,…,
θn

n!

]

(18) 

To approximate the unknown self-equilibrated stresses, five nodal 
parameter sets that multiply the shape functions (18) are adopted, 
leading to iso-parametric representation for all the stress functions. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N1 =
[
n10 , n11 ,…, n1i

]T

N2 =
[
n20 , n21 ,…, n2i

]T

M1 =
[
m10 ,m11 ,…,m1i

]T

M2 =
[
m20 ,m21 ,…,m2i

]T

T1 =
[
t10 , t11 ,…, t1i

]T

(19) 

The self-equilibrated stresses have been described using coefficients 
(19), and shape functions (18) by the following matrix form: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0
1 (θ) = Sn(θ)⋅N1

N0
2 (θ) = Sn(θ)⋅N2

M0
1(θ) = Sn(θ)⋅M1

M0
2(θ) = Sn(θ)⋅M2

T0
1 (θ) = Sn(θ)⋅T1

(20) 

Fig. 3. Parabola to circle approximation.  

Fig. 4. Conic directrix geometry.  
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The derivatives of these stress functions were: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN0
1 (θ)

dθ
= dSn(θ)⋅N1

dN0
2 (θ)

dθ
= dSn(θ)⋅N2

dM0
1(θ)

dθ
= dSn(θ)⋅M1

dM0
2(θ)

dθ
= dSn(θ)⋅M2

dT0
1 (θ)
dθ

= dSn(θ)⋅T1

(21)  

in which dSn(θ) is the matrix of the derivative of the shape functions: 

dSn(θ)=
[

0, 1, θ,…,
θn− 1

(n − 1)!

]

= [0] ∪ Sn− 1(θ) (22) 

Equations (20)–(22) can be substituted into equations 10 and 11 
relating to the equations in discretized form. 

Collecting the unknown parameters in a single vector x = [N1,N2,

M1, M2, T1], self-equilibrium equations can be rewritten in compact 
matrix form 

Ax= 0 (23)  

Where, for the spherical domes, A is a function of the angle θ, and its 
explicit expression is the following:   

Equation (23) has no unique solution since the number of the un-
knowns is greater than the number of equations. Then it is possible to 
find only three of the unknown variables as a function of the 5n− 3 
leftover ones. 

To the scope, matrix A is partitioned into two sub-matrices: a non- 
singular square matrix B, which rank is 3, and a remaining part C (3×

5n − 3). Accordingly to the matrix partition, the vector x can be divided 
into a part, b, of dimension 3, and a complementary part c. 

The discrete form of the equilibrium equation becomes: 

[B C ]

[
b
c

]

= 0 (25) 

equation (25), solved for b, gives: 

b=Kc (26)  

where 

K = − B− 1C (27) 

The solution of Equation (26) gives the set of all the self-equilibrated 
stresses as a function of the parameter’s vector c, in fact the vector x 
assumes the form 

x= K
I c (28) 

The solution of (28) can be substituted in the representation of stress 
giving the following formal expressions, that highlights the dependence 
of equilibrated stress on the parameter c. 

N1 = KN1c
N2 = KN2c
M1 = KM1c
M2 = KM2c
T1 = KT1c

(29)  

2.3. Elastic solution by FEM calculation 

Together with the self-equilibrated stress, the proposed procedure 
requires knowledge of the elastic response of the structure to the applied 
load pattern. The analytical solution exists only for a few simple cases, 
consequently, numerical one is reached using Finite Elements through 
the commercial code Ansys. The elastic solution is collected in the ma-
trix of elastic stresses containing the elastic parameters F∗ = {Ne

i ,Me
i ,

Te
i } referring to a meridian curve. The elastic results have been super-

imposed to the self-equilibrated ones leading to the optimal program 
that has furnished the sought safety assessment of the structure. 

As previously quoted a twofold strategy has been pursued to get 
either the safety factor of an assigned load pattern or assessment of a 
prescribed load pattern where the load factor is assigned in advance. 
Both the procedures result in a linear programming algorithm provided 
to consider the suitable objective function. The first being the safety 
factor, the second being the trust line distance from the middle of the 
cross-section of the dome shell. 

2.3.1. Load multiplier evaluation 
The limit multiplier of prescribed load paths, either monotonically 

increasing or randomly variable, is obtained by maximizing the load 
multiplier under the constraint that the sum of elastic response, plus any 
self-equilibrated time-independent stress solution of (22), as a function 
of c, belongs to the admissible domain. Hence it results that the opti-
mization program has the load multiplier as objective function and the 
parameters c as variables. The optimization constraints are the linear 
inequalities representing the limit domain in terms of c. 

At first elastic solution is obtained employing FEM analysis. The 
vectors Ne

i ,Me
i collected the effective generalized stress where i∈ {1,2}

referred to the meridians or parallel direction, respectively. Collocating 
the equations at discrete angles, i.e., at a finite number of θj with j∈ {1,
……,m}, where m was the number of points along the meridian curve, 
one gets the solution numerically gives the discretized form of Equation 
(29): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nj
1 = Kj

N1
c

Nj
2 = Kj

N2
c

Mj
1 = Kj

M1
c

Mj
2 = Kj

M2
c

Tj
1 = Kj

T1
c

(30)  

where the superscript ()j referred to the discrete angles θj. 

A(θ)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
dr
dθ

Sn(θ) + rdSn(θ)
)

− Sn(θ)R1 cos θ 0 0 − rSn(θ)

Sn(θ)r Sn(θ)R1 sin θ 0 0
(

dr
dθ

Sn(θ) + rdSn(θ)
)

0 0
(

dr
dθ

Sn(θ) + rdSn(θ)
)

− Sn(θ)R1 cos θ − rR1Sn(θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)   
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Finally, the optimization program, starting from equation (7) has the 
following discretized form where the stress components, Nr

i and Mr
i , 

must be calculated via (30) 

sup
c

k

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

k ∈ R+ :

⎧
⎪⎪⎨

⎪⎪⎩

h
(
Nr

i + kNe
i

)
+ α

(
Mr

i + kMe
i

)
< βh

h
(
Nr

i + kNe
i

)
− α

(
Mr

i + kMe
i

)
< βh

(
Nr

i + kNe
i

)
< β

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

(31)  

depending on the presence of tensile resistance σ0 such that axial limit 
stress is N0 = σ0h following the material constitutive properties equa-
tions (3), (5) and (7). 

2.3.2. Safety assessment for prescribed load multiplier 
Following the same reasoning, one can state a second optimization 

program based on the same constraint inequalities (31). The second 
optimization program evaluates the safety of a prescribed load multi-
plier. Namely, for a prescribed load factor k, it searched if there exist any 
self-equilibrated stresses, Nr

i and Mr
i , such that the constraint equations 

hold. In this latter case, the formulation yield to a constrained minimum 
program, the objective function being the norm, ℘, of the difference 

between the actual eccentricity eij =

(
Mi
Ni

)

j 
and the limit eccentricity h

2 

that corresponds to the stresses that violate the equilibrium and 
compatibility conditions. The resulting formulation has consisted of:   

2.4. General formulation 

The procedure has been applied to two actual domes. In particular, 
the Santa Maria del Fiore (SMF) dome, by Brunelleschi in Florence and 
the inner vault of Saint Paul (SP) dome in London have been considered. 
The SMF dome is constituted by two structures, the first is the outer vault 
made of masonry that is connected to an inner vault made of masonry as 
well. Both the structures are interconnected and behave as a unicum. 
The proposed model is applied to an equivalent structure made of a 
single layer that is assumed to be equivalent to the double layer struc-
ture’s thickness. 

The SP dome is formed by three vaults, the outer is the external 
structure visible from the street, a second inner vault is the one that can 
be seen from the interior of the church. Both these vaults have the 
principal responsibility to give the aesthetical, visual, quality of the 
dome. The load-bearing capacity is reserved for the middle structure 
that has the shape of the catenary and has been derived from Hooke’s 
considerations. The procedure proposed is applied to the middle dome 
that is seen to be described with good approximation with a cone. 

For both the analyzed structures, the self-equilibrated solution has 
been formulated through the numerical procedure that is described in 
equation (31). The actual elastic solution has been obtained through 
finite elements using the code ANSYS©. 

In Fig. 6, the scheme of the domes is reported and the relevant di-
mensions of the structures are indicated. The geometry has been used 
both to resolve equations (11) and (16) and to get the finite element 
solutions. 

As explained in the previous section, for the application of Melan’s 
Theorem, an elastic solution is needed. The closed-form analytic 

solution exists only for the simple case. For complex load conditions, 
numerical analysis is more suitable. Numerical analysis can be pursued 
by FEM for the elastic solution. 

2.4.1. Statement of the problem 
Two procedures have been stated, the first, Collapse Search Pro-

cedure (CSP), evaluated the load collapse multiplier lower-bound by 
maximization of the statically admissible stress. The second procedure, 
Safety-Evaluation Procedure (SEP), evaluated the safety of the structure 
under the load level indicated through a prescribed multiplier kp. 

The load program consisted of the first step with only the self-weight 
of the structure, dead load. Then, another load step has consisted of a 
line load acting on a generic parallel of the dome, the accidental load. 

At first, the dead load is ramped through the kd parameter that is the 
load intensity multiplier. Furthermore, ramped accidental load affected 
by the multiplier ka is superimposed to the dead load at a prescribed 
nominal level corresponding to kd = 1. 

2.4.2. CSP formulation 
The calculation is aimed at the research of the collapse value of k, say 

sc, as the maximum k, for which the compatibility conditions hold. 
The routine for the analytical part of the procedure has been 

compiled through the software Mathematica© [30]. 
The calculation, concerning only a meridian curve of the dome due to 

axial-symmetry of the problem, prevised to discretize the meridian by 
dividing it into 20 segments, see Fig. 5, where to collocate the 

compatibility inequalities and to calculate the elastic solution. 
The self-weight collapse multiplier resulted by the following linear 

program: 

sup
(Nr ,Mr )

ka

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎧
⎪⎪⎨

⎪⎪⎩

h
(
Nr

i + kaNe
i

)
− 2

(
Mr

i + kaMe
i

)
< α

h
(
Nr

i + kaNe
i

)
− 2

(
Mr

i + kaMe
i

)
< α

(
Nr

i + kaNe
i

)
< β

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

(33) 

In the program (33), the elements of vectors Nr
i and Mr

i are the re-
siduals self-equilibrated stresses, the Ne

i and Me
i are the dead load stress 

results. 
The collapse multiplier of the actual load is the obtained trough the 

following program 

sup
(Nr ,Mr )

k

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎧
⎪⎪⎨

⎪⎪⎩

h
(
Nr

i + Ne
i + kNa

i

)
+ 2

(
Mr

i + Me
i + kMa

i

)
< α

h
(
Nr

i + Ne
i + kNa

i

)
− 2

(
Mr

i + Me
i + kMa

i

)
< α

(
Nr

i + Ne
i + kNa

i

)
< β

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

(34)  

whereNa
i and Ma

i are the axial stresses and the bending moments due to 
the accidental loads. 

2.4.3. SEP formulation 
The SEP refers to evaluating the safety of a prescribed load level. The 

objective function of the corresponding linear program depended on the 
design variables, (Nr

i ,Mr
i ) as in CSP. The load is subjected to the pre-

scribed multiplier λ, and the procedure aims to assess the safety of such a 
load level. The statement of the problem consists of constrained opti-
mum research where the objective function is the eccentricity of the 
thrust line which is assumed in the form of equation (35). The 

min
c

℘

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

℘ ∈ R+,℘ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

j=1,m

[
∑

i=1,2

(
Mr

i + kMe
i

Nr
i + kNe

i
−

h
2

)j
]2

√
√
√
√ :

⎧
⎪⎪⎨

⎪⎪⎩

h
(
Nr

i + kNe
i

)
+ 2

(
Mr

i + kMe
i

)
< α

h
(
Nr

i + kNe
i

)
− 2

(
Mr

i + kMe
i

)
< α

(
Nr

i + kNe
i

)
< β

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

(32)   
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constraints of the program are equal to equation (34) provided one as-
sumes k = λ . The statement of the program is summarized in the 
following- 

min
(Nr ,Mr)

℘

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

℘ ∈ R+,

⎧
⎪⎪⎨

⎪⎪⎩

h
(
Nr

i + Ne
i + λNa

i

)
+ 2

(
Mr

i + Me
i + λMa

i

)
< α

h
(
Nr

i + Ne
i + λNa

i

)
− 2

(
Mr

i + Me
i + λMa

i

)
< α

(
Nr

i + Ne
i + λNa

i

)
< β

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

(35)  

Where 

℘=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

j=1,m

[
∑

i=1,2

(
Mr

i + Me
i + λMa

i

Nr
i + Ne

i + λNa
i
−

h
2

)j
]2

√
√
√
√ (36)  

2.5. FEM elastic solution 

FEM model and results have been obtained with ANSYS© software, 
Fig. 6. The domes have been modeled using four-node shell elements 

representing the middle surface of the dome and returned the axial 
forces and bending moments acting along the parallel and the meridian 
direction. 

The base circumference of the structure has been constrained for all 
the degrees of freedom; so that the base of the dome can be considered 
clamped. The following load cases have been considered for the analysis:  

o (1) self-weight applied as density and uniform line load applied on 
the top parallel in the vertical direction that represents the dome’s 
top lantern.  

o (2) uniform line load in radial outward, (3) inward and (4) vertical 
direction applied on a parallel corresponding to the angle θp,

p{5,10,15}.The mechanical properties of the structure are reported 
in the following Table 1: 

In appendix are contained the results of the elastic analysis used into 
the Mathematica© notebook to perform the optimization program: 

3. Results and discussion 

The CSP optimization program gave the limit multiplier and the re-
sidual stress at the incoming collapse of the structure. The existence of a 
residual able to satisfy, together with the actual elastic response, the 
compatibility constraints is the sufficient condition for the collapse did 
not occur although the so find residual does not represent the actual 

Fig. 5. Dome discretization along meridian: a) SMF; b) SP.  

Fig. 6. Finite element models of SMF (a) and SP (b) domes.  

Table 1 
Mechanical properties of the dome.  

Young modulus[N /m2] Poisson’s ratio Weight[N /m3]

18000 0.27 18000  
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Fig. 7. Thrust line inside sections (SMF) black line, the green and orange lines represent the section core limits, the section thickness is 0.77 m. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 8. Thrust line inside sections (SP).  
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residual one that we can find in the structure during its life. The CSP 
allows finding one of the compatible residuals that guarantee the 
structure safety under the applied loads provided it is amplified by a 
multiplier less than the obtained collapse one. The output of the CSP is 
represented by the eccentricity of the axial force both on the parallel 
oriented and the meridian oriented cross-section of the dome. The ec-
centricity is plotted along the meridian since it is constant with the 
longitude. 

The figures highlight that the eccentricity is contained within the 
section thickness which is the compatibility requirement imposed by the 
program’s constraints. A three-dimensional representation of the lines of 
the centers of axial forces along parallels and meridians should be 
considered as a thrust network. 

Melan’s residuals were not the actual ones but those arising from the 
routine. However, the stress resulted from the calculation is one of the 
possible statically admissible stress. Fig. 7 and Fig. 8 reported the thrust 
line along the structure’s abscissa respectively for SMF and SP, along the 
meridian and the parallel directions, named with e1 and e2. The dia-
grams showed that the calculated thrust line belongs to the structural 
thickness almost everywhere in the structure. Only in a few points, the 
thrust line attains the cross-section boundary that confirms that the 
structure attains the limit at a certain point without collapsing. One can 
interpret the violation of the limit as the occurrence of a plastic hinge at 
the point. 

In the following Table 2 the benchmark with classic FEM results is 
reported. 

4. Conclusions 

In the paper, a semi-analytical method has been described to assess 
the masonry domes’ stability. The method starts from the numerical 
approximation of the null space of the equilibrium equations of the 
spherical domes and implements the static approach to limit analysis in 
a two-way mode. In a first strategy, the safety factor for the prescribed 
load pattern is obtained through a limiting process accordingly to Mel-
an’s theorem. The second strategy has been devoted to evaluating the 
existence of a statically compatible stress state under prescribed load 
intensity. 

The latter approach consists of the research of admissible stress 
under prescribed loads that results in an admissible thrust line contained 
into the structure thickness. The method, in this second way, approaches 
the thrust line method proposed by Bloch [15]. 

The formulation is limited to axial-symmetrical domes since it is 
based on the approximated solution of the closed-form equations of self- 
equilibrium of the dome. The method can be easily extended to other 
dome shapes provided the equation expression exists to be solved via the 
proposed approximation. 

For the analyzed cases, the diagram of the resulting eccentricity 
along the meridian curve of the dome showed that a thrust line can be 
found that is contained within the dome’s thickness. The found solution 
does guarantee the safety of the investigated structure even if does not 
represent the actual response of the structure. 
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Appendix  

Table 3 
Numerical Value of stress vector (SMF)  

SMF: Self-Weight + Lantern 

ELEM N2 N1 M2 M1 

1 − 43.92 − 196.21 − 3433.9 − 12777 
21 − 17.76 − 183.71 286.91 768.93 
41 9.329 − 171.66 1717.7 6007.8 
61 26.779 − 160.33 1785.1 6438.5 
81 33.036 − 149.79 1245.1 4771.2 
101 30.596 − 139.98 581.92 2674.8 
121 22.948 − 130.78 34.249 950.56 
141 13.077 − 122.02 − 326.7 − 170.85 
161 2.9757 − 113.56 − 520.15 − 756.82 
181 − 6.2939 − 105.32 − 598.77 − 981.26 
201 − 14.327 − 97.2 − 615.11 − 1016 
221 − 21.082 − 89.148 − 606.82 − 985.3 
241 − 26.653 − 81.098 − 593.69 − 958.5 
261 − 31.13 − 72.975 − 580.39 − 959.82 
281 − 34.526 − 64.682 − 560.34 − 980.76 
301 − 36.792 − 56.084 − 519.1 − 986.43 
321 − 37.862 − 47.004 − 436.42 − 913.42 

(continued on next page) 

Table 2 
Load Multiplier Value comparison.  

Load Multiplier FEM - ANALYTIC Fem Ratio 

SMF -C1 608.34 615.33 1.01 
SP – C1 28.27 31.35 1.10 
SMF -C2 29.37 28.77 0.97 
SP – C2 2.78 3.12 1.12 
SMF -C3 26.58 28.77 1.08 
SP – C3 2.36 3.12 1.32 
SMF -C4 288.78 311.44 1.07 
SP – C4 277.65 297.65 1.07  
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Table 3 (continued ) 

SMF: Self-Weight + Lantern 

ELEM N2 N1 M2 M1 

341 − 37.949 − 37.123 − 296.94 − 671.36 
361 − 38.033 − 25.818 − 121.32 − 202.69 
381 − 41.557 − 11.038 − 63.902 69.371   

Table 4 
Numerical Value of stress vector (SMF)  

Radial inward load 

ELEM N2 N1 M2 M1 

1 − 1.67E-02 − 3.51E-04 8.9586 33.705 
21 − 7.62E-02 − 6.46E-04 4.6174 19.464 
41 − 1.73E-01 2.71E-04 − 2.2304 − 3.519 
61 − 2.63E-01 3.96E-03 − 13.62 − 45.173 
81 − 2.83E-01 − 1.34E-02 − 13.226 − 46.807 
101 − 2.16E-01 − 9.38E-03 − 1.5643 − 7.1739 
121 − 1.28E-01 − 5.03E-03 3.6711 10.955 
141 − 5.60E-02 − 1.64E-03 4.7509 15.223 
161 − 1.08E-02 3.61E-04 3.7778 12.615 
181 1.08E-02 1.13E-03 2.2126 7.9067 
201 1.64E-02 1.07E-03 0.8536 3.6765 
221 1.38E-02 6.38E-04 − 1.27E-02 0.86939 
241 8.58E-03 1.56E-04 − 0.40127 − 0.52154 
261 3.84E-03 − 1.87E-04 − 0.45841 − 0.90856 
281 7.43E-04 − 3.36E-04 − 0.34783 − 0.76233 
301 − 7.04E-04 − 3.23E-04 − 0.19483 − 0.44442 
321 − 1.01E-03 − 2.16E-04 − 7.06E-02 − 0.16414 
341 − 7.48E-04 − 8.63E-05 3.13E-04 − 2.50E-03 
361 − 3.14E-04 1.39E-05 2.48E-02 4.15E-02 
381 1.93E-04 3.17E-05 2.77E-02 1.98E-02   

Table 5 
Numerical Value of stress vector (SMF)  

Radial outward load 

ELEM N2 N1 M2 M1 

1 1.67E-02 3.51E-04 − 8.9586 − 33.705 
21 7.62E-02 6.46E-04 − 4.6174 − 19.464 
41 1.73E-01 − 2.71E-04 2.2304 3.519 
61 2.63E-01 − 3.96E-03 13.62 45.173 
81 2.83E-01 1.34E-02 13.226 46.807 
101 2.16E-01 9.38E-03 1.5643 7.1739 
121 1.28E-01 5.03E-03 − 3.6711 − 10.955 
141 5.60E-02 1.64E-03 − 4.7509 − 15.223 
161 1.08E-02 − 3.61E-04 − 3.7778 − 12.615 
181 − 1.08E-02 − 1.13E-03 − 2.2126 − 7.9067 
201 − 1.64E-02 − 1.07E-03 − 0.8536 − 3.6765 
221 − 1.38E-02 − 6.38E-04 1.27E-02 − 0.86939 
241 − 8.58E-03 − 1.56E-04 0.40127 0.52154 
261 − 3.84E-03 1.87E-04 0.45841 0.90856 
281 − 7.43E-04 3.36E-04 0.34783 0.76233 
301 7.04E-04 3.23E-04 0.19483 0.44442 
321 1.01E-03 2.16E-04 7.06E-02 0.16414 
341 7.48E-04 8.63E-05 − 3.13E-04 2.50E-03 
361 3.14E-04 − 1.39E-05 − 2.48E-02 − 4.15E-02 
381 − 1.93E-04 − 3.17E-05 − 2.77E-02 − 1.98E-02   

R. Zona et al.                                                                                                                                                                                                                                    



Journal of Building Engineering 44 (2021) 103271

12

Table 6 
Numerical Value of stress vector (SMF)  

Vertical Load 

ELEM N2 N1 M2 M1 

1 − 3.08E-02 − 0.12969 − 0.98313 − 3.6274 
21 − 2.46E-02 − 0.1309 1.3564 5.125 
41 − 2.65E-02 − 0.13237 1.4826 5.9605 
61 − 3.92E-02 − 0.13399 − 0.66183 − 1.6481 
81 − 1.37E-02 2.90E-04 − 1.7352 − 5.8001 
101 − 1.49E-02 7.30E-05 − 0.70372 − 2.4001 
121 − 1.14E-02 1.20E-04 − 8.28E-02 − 0.33957 
141 − 6.78E-03 2.18E-04 0.19643 0.59603 
161 − 3.00E-03 3.00E-04 0.25379 0.80881 
181 − 6.21E-04 3.22E-04 0.20168 0.66339 
201 5.00E-04 2.93E-04 0.11867 0.41135 
221 7.89E-04 2.30E-04 4.74E-02 0.18791 
241 6.49E-04 1.59E-04 2.73E-03 4.19E-02 
261 3.80E-04 9.51E-05 − 1.65E-02 − 2.86E-02 
281 1.41E-04 4.85E-05 − 1.85E-02 − 4.64E-02 
301 − 5.17E-06 2.00E-05 − 1.24E-02 − 3.73E-02 
321 − 6.54E-05 6.54E-06 − 4.87E-03 − 2.04E-02 
341 − 6.70E-05 2.48E-06 5.06E-04 − 6.88E-03 
361 − 4.09E-05 2.97E-06 2.86E-03 − 3.96E-04 
381 − 8.28E-07 2.04E-06 3.43E-03 5.28E-04   

Table 7 
Numerical Value of stress vector (SP)  

Self-Weight + Lantern 

ELEM N2 N1 M2 M1 

1 − 239632 − 99216.6 56.58386 − 48.9512 
21 − 228518 − 93807.3 106.6611 − 48.3104 
41 − 217424 − 88814.4 55.55982 − 63.5518 
61 − 206331 − 84196.4 − 18.6027 − 79.9153 
81 − 195224 − 79810.8 − 75.9512 − 90.8483 
101 − 184091 − 75518.7 − 106.183 − 95.5197 
121 − 172924 − 71231.2 − 115.005 − 95.8217 
141 − 161718 − 66911.6 − 112.74 − 94.1058 
161 − 150466 − 62558.4 − 107.763 − 92.024 
181 − 139160 − 58184.7 − 104.427 − 90.2786 
201 − 127789 − 53803.9 − 103.721 − 88.8701 
221 − 116334 − 49423.9 − 104.856 − 87.4697 
241 − 104771 − 45047.7 − 106.657 − 85.6986 
261 − 93066.7 − 40677.5 − 108.576 − 83.2726 
281 − 81166.7 − 36317.9 − 112.107 − 80.0553 
301 − 68990 − 31965.1 − 122.911 − 75.8445 
321 − 56408.7 − 27558.7 − 147.112 − 68.8823 
341 − 43218.7 − 22942 − 154.489 − 52.0859 
361 − 29017.5 − 18351.7 − 12.76 − 19.3532 
381 − 12514.4 − 16216.6 86.5747 − 21.8498   

Table 8 
Numerical Value of stress vector (SP)  

Radial outward load 

ELEM N2 N1 M2 M1 

1 − 22.1232 − 16.2412 29.5493 3.78262 
21 − 19.8535 − 125.888 92.1551 10.336 
41 − 5.58613 − 495.547 133.974 10.9465 
61 39.4784 − 1258.14 92.6006 − 1.56652 
81 138.34 − 2281.81 − 158.75 − 38.4705 
101 290.184 − 2685.95 − 788.3 − 107.012 
121 395.101 − 121.729 − 1833.74 − 184.055 
141 115.412 9537.04 − 2709.73 − 162.741 
161 − 1250.52 29839.7 − 1288.41 207.513 
181 − 4488.6 53756.3 6905 1263.82 
201 5032.49 58148.8 7127.95 757.76 
221 1408.15 33758.2 − 2087.54 − 875.901 
241 − 501.295 8500.8 − 3696.31 − 904.078 

(continued on next page) 

R. Zona et al.                                                                                                                                                                                                                                    



Journal of Building Engineering 44 (2021) 103271

13

Table 8 (continued ) 

Radial outward load 

ELEM N2 N1 M2 M1 

261 − 817.712 − 3506.33 − 2059.38 − 397.226 
281 − 422.639 − 4637.62 − 367.479 − 11.6036 
301 − 33.2474 − 1893.58 310.952 100.909 
321 100.253 128.591 259.303 58.423 
341 58.7329 502.638 48.0539 2.2905 
361 − 3.65277 151.565 − 37.7802 − 13.1107 
381 − 13.6865 − 89.8982 − 20.2002 − 4.344   

Table 9 
Numerical Value of stress vector (SP)  

Radial inward load 

ELEM N2 N1 M2 M1 

1 22.1232 16.2412 − 29.5493 − 3.78262 
21 19.8535 125.888 − 92.1551 − 10.336 
41 5.58613 495.547 − 133.974 − 10.9465 
61 − 39.4784 1258.14 − 92.6006 1.56652 
81 − 138.34 2281.81 158.75 38.4705 
101 − 290.184 2685.95 788.3 107.012 
121 − 395.101 121.729 1833.74 184.055 
141 − 115.412 − 9537.04 2709.73 162.741 
161 1250.52 − 29839.7 1288.41 − 207.513 
181 4488.6 − 53756.3 − 6905 − 1263.82 
201 − 5032.49 − 58148.8 − 7127.95 − 757.76 
221 − 1408.15 − 33758.2 2087.54 875.901 
241 501.295 − 8500.8 3696.31 904.078 
261 817.712 3506.33 2059.38 397.226 
281 422.639 4637.62 367.479 11.6036 
301 33.2474 1893.58 − 310.952 − 100.909 
321 − 100.253 − 128.591 − 259.303 − 58.423 
341 − 58.7329 − 502.638 − 48.0539 − 2.2905 
361 3.65277 − 151.565 37.7802 13.1107 
381 13.6865 89.8982 20.2002 4.344   

Table 10 
Numerical Value of stress vector (SP)  

Radial inward load 

ELEM N2 N1 M2 M1 

1 − 249.95 − 30.6719 − 1.5227 − 0.19492 
21 − 260.557 − 17.3158 1.04907 0.203563 
41 − 272.87 − 3.88662 1.42637 0.202969 
61 − 287.108 7.75418 1.20409 0.102103 
81 − 303.476 17.1166 2.08415 0.140983 
101 − 322.092 20.0399 5.62498 0.441927 
121 − 342.555 2.72008 12.2203 0.865238 
141 − 363.052 − 60.973 18.0403 0.693823 
161 − 379.526 − 194.414 9.12321 − 1.73959 
181 − 387.473 − 352.952 − 43.9436 − 8.68316 
201 − 30.7714 − 335.131 − 48.0968 − 5.8236 
221 − 9.52 − 206.144 9.24006 4.61105 
241 2.34041 − 57.7983 21.2462 5.31763 
261 4.73915 17.2032 12.6207 2.49536 
281 2.62052 27.1301 2.63466 0.175311 
301 0.302986 11.9368 − 1.6725 − 0.57083 
321 − 0.56575 − 0.29132 − 1.55673 − 0.35908 
341 − 0.36263 − 2.93506 − 0.33357 − 2.65E-02 
361 1.01E-02 − 0.99446 0.207692 7.57E-02 
381 8.10E-02 0.530845 0.120074 2.88E-02  
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