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Abstract: This paper describes the Field Boundary Element Method (FBEM) applied to the fracture
analysis of a 2D rectangular plate made of Functionally Graded Material (FGM) to calculate Mode I
Stress Intensity Factor (SIF). The case study of this Field Boundary Element Method is the transversely
isotropic plane plate. Its material presents an exponential variation of the elasticity tensor depending
on a scalar function of position, i.e., the elastic tensor results from multiplying a scalar function by a
constant taken as a reference. Several examples using a parametric representation of the structural
response show the suitability of the method that constitutes a Stress Intensity Factor evaluation of
Functionally Graded Materials plane plates even in the case of more complex geometries.

Keywords: Functionally Graded Materials (FGM); Field Boundary Element Method (FBEM); inter-
face; Stress Intensity Factor (SIF)

1. Introduction

In the recent past, a new class of composite materials, namely Functionally Graded
Materials (FGM), has attracted researchers and designed to satisfy multiphysical requests,
by combining different materials into one, resulting in a continuous variable material.
The main difference of FGM from traditional composites is that component properties
are combined to achieve an intermediate behavior between the constituents. When the
FGM is used at the interface between two materials, it enables a continuous transition
from one material to the other avoiding the discontinuity of the response at the interface
level. In other words, FGMs have been presented as an alternative to laminated composite
materials that exhibit a discrepancy in properties at material interfaces. This material
discontinuity in laminated composite materials leads to large interlaminar stresses and the
possibility of crack initiation and propagation. Continuous transition greatly influences
crack propagation at the interface level and avoids or reduces debonding and slip of
layers [1–4].

As a common example, metal/ceramic composites incorporate the excellent corrosion
resistance and insulating properties of ceramics with the high strength and bonding ability
of metals without requiring a high thermal stress rate. However, ceramics, in contrast to
metals, have a fragile nature so crack-like defects are usually induced under service load
conditions. Hence, FGMs are widely used in research and the manufacturing industry for
optimization and design [5,6].

For the evaluation of cracks induced by several loading conditions, many theories
and numerical applications have emerged over the years and as have many parameters to
describe the fractures. The Stress Intensity Factor, SIF, as a measure of the stress concentra-
tion at the crack tip that is responsible for the crack propagation is generally assumed as an
important parameter to determine the safety of a cracked structure [7].
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As previously mentioned, the increasing interest in cracks in Functionally Graded
Materials (FGM) gave rise to several methods such as the Weight Function approach [8,9],
Energy Release Method [10], and others.

The present work aimed to apply the boundary element method to heterogeneous
material fractures. The BEM applied to fracture mechanics is split into two different
approaches. The first, the dual boundary element method, is based on two dual integral
equations, the first based on the displacement Somigliana identity and the second obtained
through the projection on the boundary of the gradient of the first one resulting in a traction
identity [11]. The reason for such a model is based on the fact that the displacement equation
should be collocated on both sides of the crack that produced the linear dependence of
the equations. To avoid the singularity, the two different primary and dual equations
can be placed on each edge of the fracture line. The disadvantage of this approach is the
presence of hypersingular integrals. The second strategy, to avoid the dual approach, uses
a multizone formulation where the structure is divided into parts along the crack line so
that different displacement integral equations are formulated on the separate regions and
coupling is obtained using boundary conditions at the common points and on the crack
edges [12]. The formulation proposed in the present work is based on the displacement
integral equation specified for FGMs. The fracture model is borrowed from the multizone
approach; in particular, the proposed examples deal with symmetrical structures where
the crack belongs to one edge. A multizone approach for FGM has been proposed in [13];
this formulation can be extended to fracture mechanics with no complication. A simple
approach has been chosen here to focus on the relevant aspects of the SIF calculation.

The calculation used an enriched formulation of the boundary element method with
field terms that account for the variation of material elasticity [13–17]. Using the formula-
tion, the application of Elastic Fracture Mechanics (EFM) is shown to calculate the Stress
Intensity Factor under Mode I crack propagation.

The calculations followed the traditional formulation for EFM where it is supposed
that around the crack tip the elasticity of the material is constant within the small region
of stress concentration. The interface, the joints, or the surfaces, have great importance in
graded material because the stress is usually limited to these locations. In these cases, the
specific zone is the so-called “graded zone” and if the volume fractions of the constituent
materials change by a certain smooth function, the material is defined as a functionally
graded material, FGM [18–20]. Furthermore, several benchmarks and reports of models
using Linear Elastic Fracture Mechanics (LEFM) are presented in [21,22]. Moreover, it is
possible to evaluate other aspects of fractures in a microscale approach through anisotropic
2D models.

For cracked FGMs with general geometry and loading conditions, advanced numerical
methods must be applied because of the mathematically complex nature of the governing
partial differential equations with variable coefficients, and because the most available
analytical methods can only be successfully applied to cracked FGMs with very simple
geometry and loading conditions.

A study that considered the plane elasticity problem for an inhomogeneous medium
containing a crack and with the derivative of the displacement of the crack surface as a
density function with a simple Cauchy-type kernel was developed in [23]. The singular
nature of the crack tip stress field in a nonhomogeneous medium having a shear modu-
lus was not affected with a discontinuous derivative as shown in [24]. Periodic surface
cracking and the associated problem of stress and energy release and the problem of stress
concentration and delamination crack initiation and growth under residual or thermal
stress were investigated in [25]. The elastic stress and displacement fields near a crack
tip in a two-dimensional inhomogeneous cracked body were derived using an extension
of the Williams’ eigenfunction expansion technique in [26]. An inhomogeneous elastic
medium containing a crack arbitrarily oriented to the direction of the property gradient was
considered in [27]. Local homogeneity and the small-scale inelasticity of brittle materials,
where the toughness was taken to be independent of direction, was investigated in [28,29].
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Moreover, the discretized material property variation assigning different homogeneous
elastic properties to each element was used in [30]. Several numerical simulations by
varying the location of the crack in the graded region for different material gradients were
employed in [31]. The mixed-mode stress intensity factors obtained employing the domain
integrals as a postprocessing step in the extended finite element method (XFEM) have been
provided in [32–35]. A multiple iso-parametric finite element method to compute stress
intensity factor was employed in [36,37]. A numerical crack analysis of functionally graded
two-dimensional materials using an integral boundary equation method linked to the
Galerkin method to overcome hypersingular integral boundary equations was performed
by [38,39]. Extensive transient dynamic crack analyses for a functionally graded material
(FGM) by using a hypersingular time-domain boundary integral equation method were
presented in [40–43]. A layer discretization technique to approximate material inhomo-
geneity and a so-called generalized boundary element method based on the Kelvin solution
was used in a numerical examination in [44]. The symmetric Galerkin boundary element
method (SGBEM) using nonuniform rational B-splines (NURBS) for both geometry and
field variables approximation was presented by [45–47]. Other numerical solutions have
been investigated recently concerning the vibration analysis of nanocomposite conical
shells [48]. In the present paper, the plate problem under in-plane loading is analyzed in
small-displacement theory. An analysis of large displacements in the bending of tapered
plate and shells and FGM cylindrical shells where the variability of the material develops
toward the thickness as well as in the middle plane of the plate can be found in [49–54].

This paper is organized as follows: In Section 2, the mathematical framework of the
applied model, geometry, variation of mechanical properties, applied loading, and the
fundamentals of integral equations for FGMs are presented. Section 3 details the result
of the present FBEM in terms of displacements along x and y directions highlighting the
differences between the FGM cases and the homogeneous one. In addition, an intercase
comparison is shown regarding the stress intensity factors (SIFs) of mode I. In Section 4,
all results, previously shown, and final considerations are discussed as well as some
observations and suggestions for further research.

2. Materials and Methods

This section aims to introduce the fundamentals of integral equations applied to
FGM through a mixed field and boundary approach. After a brief description of the
mechanical behavior of FGM within the framework of continuum mechanics, the integral
formulation of equilibrium is described. The proof originates from the Somigliana identity
specifically for materials for which there is no analytic fundamental solution. Betti’s
reciprocity theorem is transformed using a sample material whose fundamental equation
is known. The resultant equation includes internal variables that cannot be simplified in
addition to the ordinary boundary variables. This yields a combined field and boundary
integral equation method.

The structure under consideration is constituted by a solid occupying a domain V.
The points of the solid undergoes a deformation described by the displacement vector field
ui(x) which is assumed to be infinitesimal. In the following, the indicial tensor notation is
used where subscripts denote the vector and the tensor components to a reference frame.
Moreover, a comma followed by a subscript denotes the partial derivative with respect to
the component direction of the index. Finally, the sum on repeated indexes on a monomial
is subtended.

The structure is subjected to body forces bi(x) and traction ti(x) on the boundary. The
traction is prescribed on the loaded boundary ∂Vf where displacement is unknown, on the
constrained boundary ∂Vu = ∂V\∂Vf , appropriate description of the mechanical problem
requires that the displacement be prescribed and traction is unknown.

The elastic constitutive law of the material is governed by a fourth-order elastic tensor
that has the form:

σij(x) = Cijhk(x) εhk(x) (1)
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where σij (x) is the Cauchy stress tensor and εhk(x) =
uh,k(x)+uk,h(x)

2 is the infinitesimal
Green–Lagrange strain tensor.

The material constituting the structure is assumed to be hyperelastic, hence the consti-
tutive tensor in Equation (1) has the usual symmetries that ensure that the strain energy be
conservative and that the stress and the strain be symmetrical:

Cijhk(x) = Chkij(x) = Cjihk(x) = Cijkh (x) (2)

The equilibrium equation of the structure, in terms of displacement, ui(x) is:

(Cijhk(x)uh,k(x)),j + bi(x) = 0 (3)

Let us consider u∗li(x, y) the displacement at a point x of the elastic infinite space where
elasticity is described by a constant elastic tensor C0

ijhk, due to a one-point force acting at
point y.

Let us introduce the displacement field u∗li(x, y) resulting from Kelvin’s solution of
the elastic space at point x when the unit point force acts at point y. Considering the weak
form of Equation (3) obtained through weighted residuals and using as weight function
the u∗li(x, y) of Kelvin’s solution as previously mentioned, the following Field Boundary
Integral equation results. A detailed derivation of the equation can be found in [17]:

(γδlh + Alh)uh =
∫

∂V
thu∗lhdS− PV

∫
∂V

γt∗lhuhdS +
∫

V
bhu∗lhdV +

∫
V

γσ∗lhkε
p
hkdV

+
∫

V
σ∗lhkγ,h ukdV −

∫
∂V

t̂∗lhuhdS + PV
∫

V
b̂∗lhuhdV

(4)

where
Alh = Lijhk(y)Jσ

lijk˜̂t∗lh = Lijhkε∗lijnk

b̂∗lh =
(

Lijhkε∗lij

)
,k

(5)

and
Lijhk(x) = Cijhk(x)− γ(x)Co

ijhk (6)

where Jσ
lijk(y) is a numerical coefficient depending on the boundary regularity at the

collocation point y that arises from the Cauchy principal value integration of the singular
kernels of the weak equations, which differs from the standard BEM because of the presence
of volume singular integrals that depend on the difference from the material constituting
the actual problem and the material of the reference elastic space used in the reciprocal
theorem, namely the variable elastic-like tensor Lijhk. The Lijhk accounts for the variability
of the Poisson ratio and of the anisotropy of the material; in particular, it can be constant,
although anisotropic, in order to consider an anisotropic material integral equation using
the isotropic fundamental solution as well.

The constant Poisson case that traduces the constant anisotropy class of the material
is described by vanishing Lijhk. We define a ‘scalar graded material’, the material whose
elastic tensor depends on a scalar function γ(x) and on a reference constant elastic tensor
C0

ijhk. Such variability corresponds to a simple scalar variation of the elastic modulus; it
preserves the isotropy class of the elastic tensor and allows some simplification of the
Equation (4). In this case, one can assume Kelvin’s fundamental solution described by the
same tensor C0

ijhk, then Equation (4) becomes [20,37]:

[Ali(y) + γ(y)δli]ui(y)
=
∫
V

bi(x) u∗li(x, y) dV +
∫

∂V
ti(x) u∗li(x, y)dS

−
∫

∂V
γ(x) t∗li(x, y) ui(x)dS +

∫
V

σ∗lhk(x, y) γ,h (x) uk(x) dV
(7)
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In particular, ui(x) and ti(x) are the displacements and tractions on the boundary
S. The terms u∗li(x, y) and t∗li(x, y) represent the displacements and tractions of Kelvin’s
solution. In the same manner, we denote with ε∗lhk(x, y) and σ∗lhk(x, y) the strain and
the stress due to Kelvin’s solution displacements and tractions. The numerical solution
of Equation (7) gives the displacement field of the structure, which is used to calculate
the displacement at the crack tip. Equation (7) has been discretized using quadratic iso-
parametric three nodes line elements for the boundary and eight nodes plane elements for
the interior, namely volume integrals. The equation has been collocated on the element
nodes producing as many equations as the number of nodal unknown displacement and
traction components, provided prescribed boundary data have been accounted for. For
the treatment of the integral of singular kernels, ad hoc numerical quadrature has been
used for the weak singular boundary integrals concerning u∗li(x, y); the strong singular
boundary integrals concerning t∗li(x, y) have been calculated by the rigid body motion
technique [55,56]. The proposed formulation was applied to symmetrical 2D plates in plane
stress where the crack was modeled using a single line, so no dual equation was needed,
nor did hypersingular integrals occur. Another kind of strategy for crack modeling would
consist of multiregion discretization that avoids hypersingular integration as well [20]. In
fact, in the present paper, to overcome the hypersingular integration, symmetric quarter
plate geometry, as depicted in Figure 1, was considered varying material properties and
increasing crack length also in the case of homogeneous material. Then, the results between
the proposed method (FBEM) with the classical Finite Element Method were compared,
showing a good agreement in terms of stresses, strains, and displacements of the proposed
formulation and the FEM benchmark. Moreover, starting from the displacement variation,
due to different crack tip geometry and material properties, the SIF for all cases was
computed. The displacement at the crack tip was extrapolated using a radial expansion in
a standard form curve fitting [57]:

uy(r)√
r

= C1 + C2r (8)

where uy(r) is the Mode I displacement of a nodal point and r is the distance from the
crack tip. Coefficients C1 and C2 are coefficients to be determined by minimizing the
difference between (7) and numerical solution given by (8). The numerical value of SIF is
calculated assuming, that within a small neighborhood of the crack tip, the elastic modulus
of the material is Et and ν is the Poisson ratio both assumed to be constant. With these
considerations the SIF has the usual displacement dependency form:

KI =
√

2πEt

4(1− ν2)
lim
r→0

uy(r)√
r

=

√
2πEt

4(1− ν2)
C1 (9)

2.1. Mesh and Constraints

The described method was applied to a quarter of a rectangular plate due to symmetry.
The plate has length w and height h = 2w, with a crack at the center aligned to the short
plate side. The crack length is a. Figure 1, shows the mesh and boundary conditions of
the analyzed structure. The plate mesh used for FEM analysis was constituted by iso-
parametric eight nodes domain elements where the Gauss point quadrature was employed.
The same domain elements have been used in FBEM analysis together with three nodes
quadratic boundary elements. The plate had null displacement on the nodes with y = 0,
outside the crack. The x = 0 side had symmetry constraints. The structure was loaded
by a traction σ = 1 along y-direction on the top side. Three different crack lengths were
investigated, namely a

w = 0.11; a
w = 0.33; and a

w = 0.55.
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2.2. Material Properties

The material property variation was ascribed to the Elastic Modulus only, i.e., the
Poisson ratio was fixed to ν = 0.3. In particular, the elastic tensor varied through a
multiplicative scalar field γ(x, y), and fulfilled the following equation:

E = γ(x, y)E0 ⇔ Cijhk(x) = γ(x, y)C0
ijhk (10)

In the proposed example, only the case of variability along with x and y-directions
were considered. The reference of the coordinate system had the origin coincident with the
center of the crack, consequently, the analyzed specimen had the origin at the leftmost side.
Two variabilities were accounted for:

1. XD: Young Modulus decreasing in the x-direction with γ(x, y) = γ(x) spanning from
8 to 1:

γ(x) = γ(0) e[(
−xi+w

w )ln( E0
E1

)] (11)

2. XC: Young Modulus increasing in the x-direction with γ(x, y) = γ(x) spanning from
1 to 8:

γ(x) = γ(0) e[(
xi
w )ln( E0

E1
)] (12)

3. YD: Young Modulus decreasing in the y-direction with γ(x, y) = γ(y) spanning from
8 to 1:

γ(y) = γ(0) e[(
−yi+h

h )ln( E0
E1

)] (13)

4. YC: Young Modulus increasing in the y-direction with γ(x, y) = γ(y) spanning from
1 to 8:

γ(y) = γ(0) e[(
yi
h )ln( E0

E1
)] (14)

The numerical calculation was performed assuming a plane strain condition with
reference Young Modulus equal to E0 = 103 MPa, Poisson ratio ν = 0.3, and crack length
variation equal to a

w = 0.11, 0.33, 0.55.
Figures 2 and 3 show the variation of Young Modulus along the x-direction and

y-direction. Furthermore, the dark blue and light blue curves indicate the decreasing
Young Modulus (XD) and increasing Young Modulus (XC), respectively. In the same
manner, dark green and light green curves indicate the increasing Young Modulus (YC)
and decreasing Young Modulus (YD), respectively.
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3. Results
3.1. Displacement’s Comparison FEM vs. FBEM

In this section, the solution of the FBEM algorithm is discussed. The Field Boundary
Element calculation was compared with a commercial FEM code result (Ansys ©). In
the following Figures 4–6, the displacement components along the x-direction and the
y-direction are shown for the three different crack lengths together with the FBEM results.
It can be seen that FBEM and FEM produced the same displacements.

In Figures 4–6, the evolution of displacements along the x and y-directions as Young’s
modulus of the plate varied is shown. Specifically, in Figures 4–6, the crack length varied
from a

w = 0.11 to a
w = 0.55 and the displacement along the x-direction was lower for

cases where there was a variation in material properties and that was in FGM cases. In
contrast, in the homogeneous cases, there was a higher displacement response since the
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structural response of the plate, which is closely related to material properties, did not face
a smart strength along the x-direction. The y-component of the displacement was more
representative of the future stress response. The y-component of displacement in each of
the cases shown tended to be zero at the crack tip location as expected. The numerical
evidence can be seen in the next section, where the representative SIF of stress concentration
is shown.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

3. Results 
3.1. Displacement’s Comparison FEM vs FBEM 

In this section, the solution of the FBEM algorithm is discussed. The Field Boundary 
Element calculation was compared with a commercial FEM code result (Ansys ©). In the 
following Figures 4–6, the displacement components along the x-direction and the y-di-
rection are shown for the three different crack lengths together with the FBEM results. It 
can be seen that FBEM and FEM produced the same displacements. 

 
Figure 4. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟏𝟏 

 

Figure 5. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟑𝟑 

Figure 4. Comparison of the x and y-component of displacement for a
w = 0.11.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

3. Results 
3.1. Displacement’s Comparison FEM vs FBEM 

In this section, the solution of the FBEM algorithm is discussed. The Field Boundary 
Element calculation was compared with a commercial FEM code result (Ansys ©). In the 
following Figures 4–6, the displacement components along the x-direction and the y-di-
rection are shown for the three different crack lengths together with the FBEM results. It 
can be seen that FBEM and FEM produced the same displacements. 

 
Figure 4. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟏𝟏 

 

Figure 5. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟑𝟑 Figure 5. Comparison of the x and y-component of displacement for a
w = 0.33.



Appl. Sci. 2021, 11, 8465 9 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 6. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟓𝟓 

In Figures 4–6, the evolution of displacements along the x and y-directions as 
Young’s modulus of the plate varied is shown. Specifically, in Figures 4–6, the crack length 
varied from = 0.11 to = 0.55 and the displacement along the x-direction was lower 
for cases where there was a variation in material properties and that was in FGM cases. In 
contrast, in the homogeneous cases, there was a higher displacement response since the 
structural response of the plate, which is closely related to material properties, did not 
face a smart strength along the x-direction. The y-component of the displacement was 
more representative of the future stress response. The y-component of displacement in 
each of the cases shown tended to be zero at the crack tip location as expected. The nu-
merical evidence can be seen in the next section, where the representative SIF of stress 
concentration is shown. 

3.2. Numerical Results  
To investigate the goodness of the implemented FBEM results in comparison to the 

analytical result [57], numerical calculations with different variations of Young’s Modulus 
were also performed and are reported in Figure 7 and in Table 1 regarding the KI fracture 
parameter only: 

 
Figure 7. KI vs Crack Length (𝒂𝒘) 

Figure 6. Comparison of the x and y-component of displacement for a
w = 0.55.

3.2. Numerical Results

To investigate the goodness of the implemented FBEM results in comparison to the
analytical result [57], numerical calculations with different variations of Young’s Modulus
were also performed and are reported in Figure 7 and in Table 1 regarding the KI fracture
parameter only:

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 6. Comparison of the x and y-component of displacement for 𝒂𝒘 = 𝟎. 𝟓𝟓 

In Figures 4–6, the evolution of displacements along the x and y-directions as 
Young’s modulus of the plate varied is shown. Specifically, in Figures 4–6, the crack length 
varied from = 0.11 to = 0.55 and the displacement along the x-direction was lower 
for cases where there was a variation in material properties and that was in FGM cases. In 
contrast, in the homogeneous cases, there was a higher displacement response since the 
structural response of the plate, which is closely related to material properties, did not 
face a smart strength along the x-direction. The y-component of the displacement was 
more representative of the future stress response. The y-component of displacement in 
each of the cases shown tended to be zero at the crack tip location as expected. The nu-
merical evidence can be seen in the next section, where the representative SIF of stress 
concentration is shown. 

3.2. Numerical Results  
To investigate the goodness of the implemented FBEM results in comparison to the 

analytical result [57], numerical calculations with different variations of Young’s Modulus 
were also performed and are reported in Figure 7 and in Table 1 regarding the KI fracture 
parameter only: 

 
Figure 7. KI vs Crack Length (𝒂𝒘) Figure 7. KI vs Crack Length ( a

w ).

Table 1. Stress Intensity Factors’ parametric analysis.

a
w [w = l] KIAnalytical

H KIFBEM
H KIFBEM

XD KIFBEM
XC KIFBEM

YD KIFBEM
YC

0.11 1.98515 1.27675 2.92406 0.37523 1.17085 1.28338

0.33 3.43838 2.66062 5.05537 1.05479 2.76551 2.38274

0.55 4.43893 4.05522 6.32927 2.17639 2.26057 3.49758
H = Homogeneous case; XD = Decreasing Young Modulus along the x-direction; XC = Increasing Young Modulus
along the x-direction; YD = Decreasing Young Modulus along the y-direction; YC = Increasing Young Modulus
along the y-direction.
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In particular the analytical result, shown in Table 1, was computed through the
following formula:

KI = βσ
√

πa (15)

For completeness, summary plots of the Stress Intensity Factor KI for all Young
Modulus variations and the comparison between the FBEM results for all normalized crack
lengths are shown in Figure 8

( a
w = 0.11

)
, Figure 9

( a
w = 0.33

)
, and Figure 10

( a
w = 0.55

)
.

In particular, the comparison was performed using a percentage variation in Equation
(16) with respect to the homogeneous case and the FBEM results reported for each case in
the figures as well:

%V =
KIH − KIFGM

KIH
100% (16)
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4. Discussion and Conclusions

The results obtained through the FBEM formulation were first compared with standard
FEM calculation obtained using the software Ansys ©. The finite element is based on
constant elements hence the modulus variability has to be enforced at the element scale. No
iso-parametric neither any other shape function is used to map the elasticity parameters on
the element geometry allowing heterogeneity of description. A more detailed discussion
about the influence of the FEM parametric description of material elasticity and its influence
with respect to the FBEM approach constitutes the core of [37]. In the actual results, a
comparison between standard FEM and FBEM was applied to the cracked plate where
one has to expect sudden jump of stress. The effect calculated through the FBEM matched
with good agreement that obtained by FEM both in terms of displacements and in terms of
stresses. In the mentioned reference [37], it was shown that the influence of the mesh size
rapidly decreased with the decrease in element size. In particular, it was seen to fulfill the
analytical solution in the simple cases and FBEM approached the analytical solution even
with rather coarse meshes. This result can be ascribed to the fact that boundary integral
equations and their numerical counterpart BEM generally describe structural behavior
with better approximation since the mesh concerns the boundary only.

The proposed FBEM was obtained using the homogeneous fundamental solution even
with heterogeneous material, producing domain contributions. The domain contribution
can be interpreted, Equation (5), as body force-like terms equal to the divergence of the
stress-like tensor corresponding to the tensor variation of the elasticity with respect to
the reference one applied to the fundamental solution strain, and a body force-like vector
corresponding to the stress tensor of the fundamental solution applied to the gradient
of the scalar variation of the elasticity. A novel boundary term arose as well due to the
traction-like vector corresponding to the Lijhkε∗lij stress.

From a numerical point of view, the domain contributes require volume discretization
and internal point collocation of the equation. However, a weak integral can be resolved by
numerical quadrature for this class of integrals, namely, in the 2D plane, a stress logarithmic
quadrature has been used. The strong singular integrals gave rise to the displacement
coefficient just as the free terms deriving from the Cauchy principal value integration did.
These coefficients were calculated using the rigid body motion property of the displacement
coefficient matrix.

The case study consisted of an FGM plate, in plane strain regime, axially loaded with
a uniform tensile load. The plate presented a crack at the center orthogonal to the load
direction. The calculation dealt with a quarter of the plate since symmetry of the structure
existed. The variability of the elastic modulus was investigated with respect to the stress
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intensity at the crack tip. The modulus varied with an exponential low between E0 and E1;
it was assumed that the modulus decreased and increased moving from the crack middle
toward the plate edge both in direction of the crack length and in the direction of the
applied stress, namely the x and y-directions of the assumed frame. Moreover, three crack
lengths were analyzed: 0.11, 0.33, and 0.55 times the plate width, w, Equations (11)–(14).

The stress intensity factor KI is reported in Table 1. The reported results allowed
a comparison between the analytical results for the homogeneous infinite plate through
Equation (15).

The results obtained by the present calculation were of comparable magnitude with
respect to the analytical ones. Moreover, in Table 1, the comparison of numerical SIF for
different variation types of the elasticity evidenced that it was influenced by the modulus
decrease or increase moving from the crack tip toward the interior of the plate. In particular,
one can see that when the modulus decreased moving from the crack along the crack
direction, that is perpendicular to the applied load, the SIF was greater than when the
modulus increased with distance. This can be explained by the fact that a uniformly loaded
plate response in terms of stress concentrated where the modulus increased. Hence, when
the modulus increased toward the crack, the stress increased with a higher level than the
homogeneous case. In particular, it can be seen that the KI for homogeneous plate was
between the one for increasing modulus and the decreasing one.

KIXC ≤ KIH ≤ KIXD (17)

When the variability of the material property developed along the load direction the
influence of the variability on the SIF was much less evident. The SIF decreased when
the modulus increased with distance and increased when the modulus decreased but it
remained almost equal to the homogeneous SIF.

The variability of SIF on the crack length can be seen from the graphics in Figure 7.
The figure highlights that the material variability shows that the curve representing the
variability of the SIF on the crack length moved accordingly to the material stiffness at
the tip.

The shift of the curve was meaningful in the cases of x-variation of the modulus and
negligible when the modulus varied along the y-direction.

A final consideration suggested that the numerical calculation showed the feasibility
of the method that allowed the application of integral equations to fracture mechanics
even in the cases of heterogeneous materials; moreover, it was shown that the variability
of the mechanical properties of the structure affected the value of the SIF. The qualitative
behavior of the KI can be seen in Figure 8, Figure 9, and Figure 10 where the bars and
the percentage variation (%V) of the KI were delimiting values of the homogeneous case
provided the variation developed in the x-direction. Conversely, when the variation
followed the y-direction, the behavior was quiet in comparison to the homogeneous one.

Finally, some remarks on the comparison between FEM and FBEM should be ad-
dressed here. A comparison was made with the standard FEM program. The finite element
calculation deals with piecewise constant elastic modulus at an element scale; no variability
has been accounted for within the element. The actual variability of the material proper-
ties as well as the variability of the anisotropy class at the element scale should require
iso-parametric or ad hoc shape functions for the elasticity description. Such iso-parametric
or hetero-parametric modelling of the material properties requires ad hoc FEM coding
together with an element-wise description of anisotropy directions oriented with respect
to the local axes of the element. Consequently, the FEM modelling produces more mesh
dependence than FBEM due to the dependence on the mesh of the material description too;
such approximation does not affect FBEM modelling [37].
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