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Abstract
Bone is an extraordinary biological material that continuously adapts its hierarchical microstructure to respond to static and 
dynamic loads for offering optimal mechanical features, in terms of stiffness and toughness, across different scales, from the 
sub-microscopic constituents within osteons—where the cyclic activity of osteoblasts, osteoclasts, and osteocytes redesigns 
shape and percentage of mineral crystals and collagen fibers—up to the macroscopic level, with growth and remodeling 
processes that modify the architecture of both compact and porous bone districts. Despite the intrinsic complexity of the 
bone mechanobiology, involving coupling phenomena of micro-damage, nutrients supply driven by fluid flowing throughout 
hierarchical networks, and cells turnover, successful models and numerical algorithms have been presented in the literature to 
predict, at the macroscale, how bone remodels under mechanical stimuli, a fundamental issue in many medical applications 
such as optimization of femur prostheses and diagnosis of the risk fracture. Within this framework, one of the most classical 
strategies employed in the studies is the so-called Stanford’s law, which allows uploading the effect of the time-dependent 
load-induced stress stimulus into a biomechanical model to guess the bone structure evolution. In the present work, we 
generalize this approach by introducing the bone poroelasticity, thus incorporating in the model the role of the fluid content 
that, by driving nutrients and contributing to the removal of wastes of bone tissue cells, synergistically interacts with the 
classical stress fields to change homeostasis states, local saturation conditions, and reorients the bone density rate, in this 
way affecting growth and remodeling. Through two paradigmatic example applications, i.e. a cylindrical slice with internal 
prescribed displacements idealizing a tract of femoral diaphysis pushed out by the pressure exerted by a femur prosthesis 
and a bone element in a form of a bent beam, it is highlighted that the present model is capable to catch more realistically 
both the transition between spongy and cortical regions and the expected non-symmetrical evolution of bone tissue density 
in the medium–long term, unpredictable with the standard approach. A real study case of a femur is also considered at the 
end in order to show the effectiveness of the proposed remodeling algorithm.
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1  Introduction

The bone tissue is a dynamic system able to modify dynami-
cally its outer shape and inner microstructure in response to 
chemo-mechanical stimuli coming from the environment, 
through several processes such as growth (mass change), 
remodeling (mass redistribution associated to changes 
in  material properties), and morphogenesis (shape and 
structural modifications).

From a biological point of view, only at the end of the 
last century (Frost 1969; Martin 1984; Turner 1991, 1998), a 
description of the activities of the different bone cell popula-
tions was formalized, clarifying some key mechanisms like 
that of formation and resorption of the bone tissue due to 
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osteoblasts and osteoclasts cells. In particular, remodeling 
of bone tissue occurs at the trabecular surface by the col-
laborative cellular activities of bone-resorbing osteoclasts 
and bone-forming osteoblasts (Parfitt 1994). Osteocytes, 
the most abundant cell type in bone tissue, are postulated 
to orchestrate the metabolic activities of these effector cells 
(Tatsumi et al. 2007; Nakashima et al. 2011). Although the 
exact mechanism by which osteocytes perceive mechani-
cal load remains unclear, osteocytes are believed to be the 
most likely mechanosensory cells (Cowin et al. 1991, 2007; 
Mullender and Huiskes 1997; Huo et  al. 2008; Adachi 
et al. 2009a,b), forming a complex intercellular network—
the lacuno-canalicular system—via slender cell processes 
housed in the porosities inside the mineralized bone matrix 
(Kamioka et al. 2001, 2009; Sugawara et al. 2005). This 
intercellular network system acts as the pathway of mechani-
cal signals from the osteocytes to the cells on the trabecular 
surfaces (Adachi et al., 2009c).

From a biomechanical point of view, the bone remod-
eling phenomenon involves changes in trabecular archi-
tecture, apparent density, and, in turn, modifications of the 
material properties. The first studies were based on clinical 
observations. Galileo Galilei compared the dimensions of 
bones from animals of different sizes and suggested that 
their forms were determined by their functions, gravity, and 
environment (Ascenzi 1993; Minutolo et al., 2020). Wil-
helm Roux in 1880 was the first author to introduce the con-
cept of functional adaptation of the bone tissue to describe 
growth and remodeling in response to a changing environ-
ment (Fung 1990). Wolff (1869, 1892, 1986) developed the 
trajectorial hypothesis—known as the Wolff law—i.e., the 
alignment of the trabeculae of the cancellous bone to the 
principal stress directions.

To date, many theories and mathematical models have 
been proposed by several authors to describe the remodeling 
phenomenon (Ambrosi et al., 2019; Oumghar et al. 2020; 
Della Corte et al., 2020). As said, it is known, at least since 
the end of the nineteenth century, that the loading history 
affects the growth and remodeling processes of the bone 
(Frost 1987), a relevant problem for the mathematical mod-
eling being to capture, in a realistic and computable way, the 
interaction between mechanical loading and bone evolution. 
This has been generally attempted by means of a stimulus 
function linking mechanical and physiologic parameters 
involved in the bone tissue processes.

Two general approaches are proposed in the literature: the 
adaptive elasticity theory and the bone maintenance theory. 
The adaptive elasticity theory, developed for the first time 
by Cowin and Hegedus (1976), is a continuum mechanical-
based formulation, in which the remodeling equations relate 
the change of the bone tissue density to mechanical stimuli 
(Huiskes 1987; Jang and Kim 2008). In particular, Cowin 
et al. (1992) proposed a mathematically rigorous theory for 

the remodeling of the internal architecture of the cancellous 
bone, called the evolutionary Wolff's law. The tissue bone 
was supposed to be a poroelastic biphasic material consist-
ing of a solid phase, comprising bone cells and extracellular 
matrix, and a fluid phase, identified as the extracellular fluid. 
Moreover, Cowin (1986) introduced the Fabric Tensor, a 
second-order tensor to describe the anisotropy of the bone 
tissue, which was also employed as an evolving variable 
responsible for the tissue remodeling and leading to a state 
of equilibrium as stress and Fabric eigenvectors coincide.

The bone maintenance theory was developed by Fyhrie 
and Carter (1986) and accounted for both adaptations of 
bone apparent density and trabecular architecture. This 
theory is based on optimizing a local remodeling objective 
function depending on the apparent density, the orienta-
tion of material axes, and the stress tensor. The optimiza-
tion analysis showed that trabecular orientations aligned 
with the principal stress trajectories. Expanding these 
ideas, Carter et al. (1987) proposed a method to account 
for the entire stress history of a bone, by introducing the 
daily remodeling stimulus. A key finding of this study was 
that the solution did not converge to a unique equilibrium 
state. On the basis of this behavior, Carter et al. (1989) later 
suggested the existence of an attractor state, rather than a 
remodeling equilibrium state. Starting from this, Beaupré 
et al. (1990a) extended bone maintenance theory including 
time-dependent remodeling and adding surface growth, with 
internal remodeling considered as surface growth in internal 
cavities. The model proposed by Beaupré et al. (1990a)—the 
so-called Stanford law—will be deeply discussed in the next 
section.

Apart from the use of the theory of elasticity to describe 
remodeling—by using Wolff law, modified similar rela-
tions as well as introducing multiscale models (Matsuura 
et al., 2003; Li et al., 2007; Coelho et al., 2009; Perrin et al., 
2019)—the influence of interstitial fluid on bone remod-
eling plays a crucial role, often highlighted in literature 
with respect to processes occurring at cellular level (For-
nells et al., 2007; You et al., 2008). The complex network 
of lacunae-canaliculi channels in the bone tissue (Li et al., 
1987; Grimm and Williams 1997; Nauman et al., 1999; 
Lim and Hong 2000; Beno et al. 2006) permits interstitial 
fluid flow through micro-porosities (Piekarski and Munro 
1977; Weinbaum et al., 1994; Cowin et al., 1995). Being the 
porosity of the inter-trabecular matrix greater than that of 
the lacunar-canalicular system (Cowin 1999), the interstitial 
fluid from the lacunar-canalicular channels can flow into 
and out of these larger inter-trabecular porosities, which acts 
as low-pressure reservoirs. The literature reports that fluid 
flow enhances cell proliferation (Jiang et al. 2002; Kapur 
et al., 2003) and the expression of phenotypic markers of 
osteoblastic cells (Owan et al., 1997; You et al., 2001; Wu 
et al., 2006). Also, it seems to promote the release of the 
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paracrine factors necessary for the anabolic response of bone 
to mechanical loads (Forwood 1996; Baker et al., 2001; Gne-
tos et al., 2005; Li et al., 2005). Moreover, fluid flow was 
as well shown to increase osteocytic prostaglandins (Ajubi 
et al., 1996, 1999) and nitric oxide (Klein-Nulend et al., 
1995) and is believed to play important roles in providing 
nutrients and removing wastes, being directly involved in 
cellular mechano-transduction (Burger and Klein-Nulend 
1999; Bonewald and Johnson 2008; Fritton and Weinbaum 
2009). Several authors have suggested that when a whole 
bone is deformed, the strain-induced pressure gradient will 
cause bone fluid to flow in the pericellular matrix space of 
the lacunar-canalicular system, inducing a drag force on the 
matrix fibers (Weinbaum et al., 1994; Knothe Tate 2003; 
Cowin 2007). As a consequence, the coupling between fluid 
flow and different stress and strain measures was deeply 
investigated (Kameo et al., 2016a; Kuman Tiwari 2017; Cre-
vacuore et al., 2019), at different scales (Ganesh et al. 2020) 
and by including cyclic loadings (Kameo et al., 2016b; Li 
et al., 2020).

At the cellular level, many authors suggest that the osteo-
cyte is the cell best situated to perceive physical signals, 
especially interstitial fluid flow (Weinbaum et al., 1994; 
Duncan and Turner 1995; Turner et al. 1994). Sanchez et al. 
(2020) and Giorgio et al. (2019) focused their works on the 
role of fluid flow in bone mechanobiology. Sandino et al. 
(2017), by modeling in a poroelastic numerical framework 
76 cubes of trabecular bones, quantified the variation in the 
mechanical stimuli bone due to the presence of the fluid 
flow. Hence, the flow is considered as a stimulus that drives 
osteocyte response, since pressure variation within the bone 
fluid can lead to shear stress forces, hydrostatic pressure and 
electric field at the cell membrane of the osteocytes. These 
mechanisms stimulate osteocytes to produce and secrete 
hormonal and biochemical messengers such as cytokines 
and growth factors which affect cell differentiation and pro-
liferation, therefore regulating the bone remodeling process 
(Pollack et al., 1977; Kelly et al. 1985; Montgomery et al. 
1988; Reich et al., 1990; Rubin et al. 1997; Jacobs et al., 
1998; Jin et al. 2021).

By starting from this framework, the present study is 
aimed to extend the Stanford law proposed by Beaupré et al. 
(1990b) by including the dimensionless fluid content, being 
the bone tissue supposed to be more realistically as poroe-
lastic. As it will be shown, this parameter affects the rela-
tion between stress stimulus at the tissue level and the rate 
of density responsible for the remodeling, regulating the 
nutrients supply and thus the activity of bone tissue cells. 
In other words, in our model, the stress stimulus at tissue 
level was supposed to be a function of the density, the stress, 
and the fluid content as well. As a consequence, if the fluid 
content increases, the rate of the bone formation increases, 
and vice versa, this cooperating with the stress to break some 

symmetries in the outcome of the bone remodeling. Finally, 
the remodeling rate relation was also assumed to provide 
both a zone in which the bone is in a homeostatic state and 
a zone of saturation. In particular, the zone of homeostatic 
activity, the so-called Dead Zone (DZ), as proposed by 
Beaupre et al. (1990b), corresponds to a range of mechani-
cal stimulus (around a reference value that bone senses as 
a physiological stimulus) within which no net change of 
bone density is provided, the saturation zone being instead 
the region where the rate of density remains constant for an 
increment or decrement of the stress stimulus, in the case of 
bone formation or absorption, respectively. This assumption 
is related to the evidence reported by Adams et al. (1997) in 
the bone remodeling response to high mechanical stimuli.

In what follows, it is first recalled the Stanford law, the 
governing equations of poroelasticity, the proposal of iso-
tropic model influenced by the fluid flow and some selected 
examples of remodeling (Sect. 2). Then, results obtained by 
applying the proposed model are compared with standard 
ones, to highlight how poroelasticity contributes to deter-
mine non-symmetrical bone density profiles even if in pres-
ence of symmetry of both geometry and loads, as actually 
can be observed in vivo (Sect. 3). Finally, Sect. 4 is devoted 
to concluding remarks and perspectives.

2 � Materials and methods

2.1 � Isotropic remodeling model—the Stanford law

Beauprè et al. (1990a) proposed a unified time-dependent 
approach for periosteal and internal bone remodeling that 
takes into account the amount of bone surface area on which 
osteoclasts and osteoblasts can operate. They extended the 
bone maintenance theory developed by Carter and col-
leagues (Carter 1987; Fyhrie and Carter 1986; Whalen et al., 
1988) into a time-dependent remodeling theory. The essence 
of this approach is that the bone tissue needs a certain level 
of mechanical stimulus to maintain itself. If the bone tissue 
experiences exceeding stimulation, additional bone will be 
deposited. On the other hand, if bone tissue is insufficiently 
stimulated, it will be resorbed. The proper level is set by sys-
temic and local biochemical influences of adjacent tissues. 
The difference between this appropriate level and the actual 
imposed one of daily mechanical stimulation determines 
the impetus and speed of remodeling. The model proposed 
by Beauprè et al. (1990a)—known as the Stanford law—is 
isotropic, and the bone remodeling response is expressed as 
a function of the mechanical stimulus, the so-called daily 
stress stimulus.

At the macroscopic scale, the bone adaptation process is 
described on a daily basis by relating the remodeling rate to 
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a set of stresses corresponding to successive loading condi-
tions. The daily stress stimulus measured at the continuum 
level, � , is defined as:

 where ni is the number of cycles of load i , m is a constant 
and �i =

√
2EUi is the local effective stress. Note that E 

represents Young’s modulus and Ui is the Strain Energy 
Density produced by the load i in a certain point. The con-
stant m is a weighting factor for the relative importance of 
the stress magnitude and the number of load cycles. For 
m = 1 , the stress magnitude and the number of cycles 
are equally important. Increasing values of m indicate an 
increasing dependence on those activities having high-stress 
magnitudes.

At the microscopic level, the bone remodeling response 
is expressed by the daily stress stimulus at the tissue level, 
�t , related to � by:

being � the apparent density and 𝜌̂ = 2.283 g
/
cm3 the cor-

responding value of the bone at maximum density, assumed 
equal to the density of the fully mineralized tissue (Beauprè 
et al., 1990b).

The remodeling response is measured in terms of the 
bone resorption/formation rate, ṙ(𝜇m∕day) , which gives the 
net tissue volume formed or resorbed per unit time and refer-
ence area. The remodeling rate relation is typically nonlin-
ear and spatially inhomogeneous (Carter 1982; Cowin and 
Hegedus 1976; Frost 1986; Huiskes et al., 1987), depend-
ing in fact on the bone tissue type and the sites. It is rea-
sonable to assume the possible existence of a homeostatic 
region corresponding to a range of “normal” activities, and 
absorption and formation zones associated with decreased 
and increased levels of daily stress stimulus, respectively.

In the study by Beauprè et al. (1990b), the remodeling 
rate, ṙ , is assumed to be linear and related to the difference 
between the daily stress stimulus at tissue level, �t , and a 
reference value, �ref  , by the following piecewise function:

 where cr and cf  are the slopes of the resorption and forma-
tion ramps, respectively. The slope of the bone resorption 
curve, cr , is typically greater than the slope related to the 
bone apposition, cf  , being the osteoclastic activity faster 

(1)� =

(∑
day

ni�
m

i

) 1

m

(2)𝜓t =

(
𝜌̂

𝜌

)2

𝜓

(3)

ṙ =

⎧⎪⎨⎪⎩

cf
�
𝜓t − 𝜓ref − w

�
if 𝜓t > 𝜓ref + w formation

0 if 𝜓ref + w < 𝜓t < 𝜓ref − w homeostasis

−cr
�
𝜓ref − 𝜓t − w

�
if 𝜓t < 𝜓ref − w absorption

than the osteoblastic one (Frost 1986; Parfitt 1983). Figure 1 
shows the remodeling rate, ṙ , as a function of the stress, for a 
value of the apparent density equal to � = 1 g

/
cm3.

The equation (3) represents the relation that can be used 
to calculate the external remodeling and the rate of tissue 
apposition or resorption on external surfaces (periosteum 
and endosteum). Furthermore, the linear relation (3) exhibits 
the so-called Dead Zone (DZ), the homeostatic region that is 
a range of stimulus of width 2w around the reference stimu-
lus, �ref  , within which no net bone mass change is produced.

On the basis of bone histomorphometry (Frost 1983), 
Beauprè et al. (1990a) calculated the internal remodeling 
by relating the density change rate, 𝜌̇ , with the bone surface 
area per unit volume, Sv , by:

The specific surface area, Sv , was empirically determined 
as a function of the bone porosity by Martin (1984) for both 
cortical and cancellous bone, spanning the entire range of 
apparent density. The relation proposed by this study was 
a non-uniform function of the apparent density, with inter-
mediate values of the specific area greater than those cor-
responding to extremely porous or dense bone, being the 
bone surface area differently available for osteoblastic and 
osteoclastic actions.

Summing up, it is generally accepted a time-dependent 
theory for bone remodeling in which internal and external 
remodeling are treated in a unified and consistent fashion 
as a surface-mediated phenomenon (Beauprè et al., 1990a). 
External remodeling changes (changes in shape or size) are 
then calculated directly from the linear rate of bone apposi-
tion or resorption on periosteal surfaces. Internal remodeling 
instead results from the linear bone apposition and resorp-
tion on internal surfaces. The local bone specific surface area 
provides the key link between the linear remodeling rate and 
the rate of change of bone apparent density.

(4)𝜌̇ = ṙSv𝜌̂

Fig. 1   The remodeling rate ṙ as a function of the stress, by keeping 
fixed the density to the value � = 1 g

/
cm3
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2.2 � Poroelasticity constitutive equations

As it is well known, Terzaghi (1943) first proposes a model 
for the one-dimensional consolidation in order to analyze the 
influence of pore fluid flow on soil deformation. Biot (1935, 
1941) was instead the first author who proposed a complete 
theory of linear poroelasticity, introducing the concept of 
the effective medium approach, which is able to describe the 
coupling between the deformation of linear elastic materials, 
governed by the classical Hooke’s law, and the interstitial 
fluid flow, ruled by the Darcy’s law (see also Esposito et al., 
2022 for some non-standard behaviours). Two further rigor-
ous approaches, i.e., the mixture theory and the homogeniza-
tion derivations, have been presented in the literature, con-
sidering different averaging processes, all leading, however, 
to an equivalent set of governing equations.

By following the effective medium approach, the poroe-
lastic field variables are assumed to be the stress measures, 
i.e., the total stress tensor � and the pore pressure p , and 
the strain measures, i.e., the strain in the solid phase � and 
the dimensionless variation in fluid content � . In particu-
lar, the variation in fluid content � is the variation of the 
fluid per unit volume of the porous material due to diffu-
sive fluid mass transport.

The Darcy’s law is a form of the balance of linear 
momentum relating the fluid mass flow rate vector, � , and 
to the gradient of the pore pressure p , according to the 
following equation

 where � is the coefficient of permeability, expressed as the 
ratio between the intrinsic permeability k and the fluid vis-
cosity � , the intrinsic permeability being only function of 
the porous structure.

It can be remarked that the porous media can be in 
drained or undrained conditions. Hence, the constitutive 
parameters of the material are governed by:

–	 the undrained moduli, indicated by the subscript u, cor-
responding to the situation in which the pores are filled 
by the fluid whose flow is constrained;

–	 the drained elastic moduli, indicated with no subscript, 
corresponding to the situation in which the pore fluid is 
fully drained and the fluid flow is allowed.

The stress–strain relationship for a poroelastic isotropic 
material can be written in the form:

 where G and � are the drained isotropic elastic constants, 
i.e., the shear modulus and the Poisson’s ratio, respectively, 

(5)� = −� ∇p

(6)� + �p� = 2G� +
2G�

1 − 2�
tr(�)�

tr(�) is the trace of the strain tensor and � is the identity 
tensor.

The relationship between the dimensionless fluid con-
tent � and the stress is:

 where � is the Biot-Willis parameter, and B is the Skempton 
coefficient. Note that, if the pore pressure vanishes, Eqs. (2) 
and (7) give tr(�) = 2G

1+�

1−2�
tr(�) and � = � tr(�) , respectively. 

Thus, � is the ratio of the fluid volume gained (or lost) in a 
material element due to the volume change of that element 
when loaded under the drained condition.

Nur and Byerlee (1971) provided an expression for the 
coefficient � , as:

 being K and Ks the drained bulk modulus and the one of the 
solid phase, respectively.

By setting the undrained condition ( � = 0 ) in Eq. (7), the 
pressure results:

Thus, the Skempton coefficient B measures how the stress 
is partitioned between solid and fluid phases; moreover, tak-
ing into account Eq. (4), the parameter B results to be related 
to the drained and undrained solid properties and the fluid 
properties by means of the expression:

 being Kf  and � the bulk modulus of the fluid and the poros-
ity, respectively.

The value of B tends to 1 for completely saturated materials 
(i.e., the hydrostatic stress is carried by the fluid that completely 
fills the pores); on the contrary, for B = 0 the pore pressure van-
ishes and the stress is completely carried by the solid skeleton.

The undrained elastic bulk and Poisson moduli can be 
expressed as:

 and

 , respectively.

(7)2G� = �
1 − 2�

1 + �

(
tr(�) +

3

B
p
)

(8)� = 1 −
K

Ks

(9)p = −
B

3
tr(�)

(10)B =
�Kf

[� − �(1 − �)]Kf + �K
=

3
(
�u − �

)

�(1 − 2�)
(
1 + �u

)

(11)Ku = K

[
1 +

�2Kf

(1 − �)(� − �)Kf + �K

]

(12)�u =
3� + B(1 − 2�)

(
1 −

K

Ks

)

3 − B(1 − 2�)
(
1 −

K

Ks

)
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For quasi-static phenomena additionally characterized by 
negligible body forces, the conservation of linear momentum 
becomes:

The conservation of mass is written in the form:

 where s is the eventual source density, that is the rate of 
injected fluid volume per unit volume of the porous solid.

By accounting for the Darcy’s law (5) and the expression 
for the fluid content (7), the conservation of mass equation 
(14) can be expressed in terms of the stress � and the pres-
sure p , leading to the following formula:

By setting

Eq. (15) can be also rewritten in the alternative equivalent 
form as:

2.3 � Proposal of isotropic remodeling influenced 
by fluid flow

In this work, a new remodeling formulation, aimed to extend 
the Stanford law proposed by Beauprè et al. (1990b) by 
including the dimensionless fluid content, is proposed. In 
more detail, by recalling that the bone tissue is a poroelastic 
medium, from Eq. (7), the dimensionless fluid content � can 
be expressed as

We thus assumed that the stress stimulus at tissue level 
�t is a function of the density � , the stress �i , and the fluid 
content � as well. In this way, the fluid content can be in par-
ticular interpreted as a triggering factor influencing both the 
supply of nutrients and the removal of wastes of bone tissue 
cells, in turn affecting the relation between stress stimulus 
at the tissue level �t and remodeling rate of density ṙ . This 
more realistic interpretation of the bone remodeling process 
can be translated mathematically by means of an ad hoc 

(13)div(�) = �

(14)
��

�t
+ div(�) = s

(15)� ∇2p + s =
3
(
�u − �

)

2GB(1 + �)
(
1 + �u

) �

�t

(
tr(�) +

3

B
p
)

c =
2GB2�(1 − �)

(
1 + �u

)2
9
(
1 − �u

)(
�u − �

) g =
2GB(1 + �)

(
1 + �u

)

3
(
�u − �

)

(16)c∇2
(
tr(�) +

3

B
p
)
+ g s =

�

�t

(
tr(�) +

3

B
p
)

(17)� =
�

2G

1 − 2�

1 + �

(
tr(�) +

3

B
p
)

function f� , related to the dimensionless fluid content � , as 
follows

 where the quantity (1 + �) works as an activator factor and 
� is the power to be set for properly describing the effective-
ness of the action. The power value � depends in fact on the 
level of activities of the bone tissue cells, the concentra-
tion and quality of the fluid in terms of possible presence of 
growth factors, and needs to be determined by experimental 
tests. The function f� is so a measure of the surplus of fluid 
content strictly related to the applied loads to which the bone 
tissue is subjected to. If 𝜁 > 0 , the bone tissue has a surplus 
of fluid and, as a consequence, a greater supply of nutri-
ents and a better capability to remove wastes of bone tissue 
cells. Conversely, if 𝜁 < 0 , the dearth of the fluid reduces 
the amount of nutrients available for bone tissue cells and 
helps the stack of wastes. If � = 0 , the bone tissue does not 
involve a strain due to proroelastic effect and thus the bone 
tissue is soaked by basal fluid, and the effect of the activator 
factor vanishes.

The stress stimulus at tissue level �t described in eq. (2) 
is here reformulated to take into account the fluid content � 
through the function f� , that is

It is worth to precise that the proposed modeling 
approach, analogously to that based on the standard Stan-
ford’s law, is a macroscopic one. This implies that absorption 
and resorption activities occurring at the microscopic level 
and determined at that scale by the competition between 
osteoblasts and osteoclasts, are somehow “projected” at the 
continuum level where, in fact, mechanical stress and fluid 
content (supplying nutrients in the bone districts) all con-
tribute with the cells’ dynamics to the macroscopic bone 
density upshot. This means that the macroscopic outcomes 
do not simply “copy” what happens at the microscale among 
bone cells, the remodeling being the final result of processes 
occurring across the scales (Fraldi and Carotenuto 2018).

The adopted remodeling parameters in (3), i.e., the 
resorption slope cr , the formation slope cf  , and the stress 
stimulus reference value �ref  are material constants, esti-
mated from experimental studies present in literature (Beau-
prè et al., 1990b) and are listed in Table 1.

By using these values, the comparison in terms of 
remodeling rate ṙ between the Stanford law (red line) and 
our proposal is shown in Fig. 2, by keeping fixed the level 
of stress to � = 2 MPa (up) and the value of the density to 
� = 1 g∕cm3 (down). The lighter and darker blue lines refer 
to the poroelastic formulation with a surplus ( � = +0.001 ) 

(18)
if 𝜁 ≥ 0 f𝜁 = (1 + 𝜁)𝛾

if 𝜁 < 0 f𝜁 = (1 + |𝜁 |)−𝛾

(19)�t
proposal

= f��t
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and a lack ( � = −0.001 ) of fluid content, respectively 
(Table 2).

It is worth noting that, in the case of bone formation 
and oversupply of fluid content, that is � = +0.001 corre-
sponding to the darker blue lines, the stress at tissue level 
and, consequently, the rate of the bone remodeling result 
higher than that predicted by the Stanford law. On the other 
hand, in the case of bone absorption, the bone tissue will 
resorb less. These effects result in complementary ones 
(lighter blue line) if there is a lack of fluid content, that is 
� = −0.001 . For example, as it can be noted in Fig. 2 (up), if 

� = 0.8 g
/
cm3 , the corresponding value of the rate of bone 

formation obtained with Stanford law is 1.32 �m∕day (red 
line). With a surplus of fluid content (darker blue line), this 
value rises to 2.89 �m∕day (+ 120%), and goes down to 0.37 
(− 70%) with a lack of the fluid content (lighter blue line).

In the case of homeostasis, the effect of the fluid con-
tent on the remodeling rate acts modifying the DZ window 
width, and both the upper and lower values of the homeo-
stasis region. It is worth to highlight that, for densities cor-
responding to DZ for Stanford law, our formulation furnishes 

Table 1   Remodeling material parameters

Remodeling material parameters

Reference stress stimulus Ψ ref [MPa/day] 50
Loads number of cycles n [cycles/day] 6000
Load weighting factor m 4
Formation slope cf [mm/day] 0.02
Resorption slope Cr [mm/day] 0.02
Homeostasis window width w [MPa/day] 25

Table 2   Poroelastic material parameters

Poroelastic material parameters

Solid phase bulk modulus Ks [MPa] 16,000
Fluid phase bulk modulus Kf [MPa] 2300
Poisson’s coefficient � 0.25
Permeability K [mm2/MPa s] 656

Fig. 2   Comparison in terms of 
remodeling rate ṙ between Stan-
ford law (red) and our proposal, 
by setting the fluid content 
� = +0.001(darker blue) and 
� = −0.001 (lighter blue), by 
keeping fixed the stress to the 
value � = 2MPa (up), and by 
keeping fixed the density to the 
value � = 1 g

/
cm3 (down)
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values of rate of bone remodeling corresponding to forma-
tion ( � = +0.001 ) or resorption ( � = −0.001).

Finally, the assumed remodeling rate relation was sup-
posed to provide a zone of saturation. The saturation is pre-
sent in both formation and absorption zones and is related to 
the yield stress limit �Y of the material, set as a power func-
tion of the density � of the material (Lotz et al., 1990), as

As a consequence, the daily stress stimulus � measured at 
the continuum level in equation (1) was modified as

2.4 � Some paradigmatic examples

Two examples of direct interest in biomechanical appli-
cations have been chosen to verify the feasibility and the 
effectiveness of the proposed remodeling approach. To this 
purpose, both the classical Stanford Law and our proposal 
have been implemented by means of customized algorithms 
in the numerical Finite Element code ANSYS® Multiphys-
ics (ANSYS Inc., Canonsburg, PA, USA) and the obtained 
results have been compared.

The first example is constituted by a beam with a rectan-
gular section undergoing bending moment applied to the 
extremities, chosen to simulate, for instance, the behavior 
of a single trabecula or a cortical tract of bone tissue. The 
beam has a length of 20 mm and a rectangular section of 
1 mm × 2 mm. Due to symmetry, only half of the structure 
has been analyzed. A bending moment equal to 0.26 Nmm 
was applied to the ends of the beam and a vanishing flow has 
been also imposed on the external surfaces of the poroelastic 
structure.

The second example is constituted by a bi-phase hol-
low cylinder subject to prescribed radial displacements at 
the innermost boundary, in principle replicating an ideally 
cylindrical section of the diaphysis of the femur. The cylin-
der has a height equal to 200 mm, and the internal and the 
external radii have been set to 8.5 and 18 mm, respectively 
(Esposito et al., 2018, 2020). The thickness of the internal 
and external phases, i.e., the trabecular and cortical bone, 
have been assumed equal to 9.5 and 3 mm, respectively. 
Internal prescribed radial displacement equal to 0.4 mm has 
been applied to the internal faces of the cylinder in order to 
simulate the action of the prosthesis inside the femur canal. 

(20)�Y = 25�1.8

(21)

if 𝜎i < 𝜎Y , 𝜓 =

�
∑
day

ni𝜎
m

i

� 1

m

if 𝜎i ≥ 𝜎Y , 𝜓 =

�
∑
day

ni𝜎
m

Y

� 1

m

Also in this case, a vanishing flow has been imposed on the 
external surfaces of the structure.

A scheme of the geometries of the proposed structures is 
depicted in Fig. 3, e.g., the beam subject to bending moment 
(up) and the bi-phase hollow cylinder subject to internal 
radial prescribed displacements (down).

When implementing the poroelastic numerical simula-
tions, porous media containing fluid are modeled into the FE 
code as a multiphase material, by applying an extended ver-
sion of Biot’s consolidation theory. The flow is considered 
to be a single-phase fluid and the porous media is assumed 
to be fully saturated.

In order to implement our coupled fluid–structure remod-
eling formulation, the finite element identified in ANSYS 
by the code CPT215 has been chosen. The adopted element 
is a three-dimensional coupled pore-pressure mechanical 
solid element with eight nodes and linear shape functions. 
Four degrees of freedom are considered at each corner node, 
three translations in the nodal x, y, and z directions, and 
one pore-pressure degree of freedom. The typical form of 
the governing equations for Biot’s consolidation problems 
implemented in FEM code is:

 where s is an external source, supposed to be null in the 
present case, �V is the volumetric strain and M(i) refers to the 
Biot’s moduli of the i-th material, one for each element of 
the meshed structure, being i ∈ [1, ..,Nelems] , and Nelems the 
number of the elements.

With the aim of obtaining the FEM results, the equation 
(15) needs to be re-arranged according to the expression 
given in the equation (22).This aim is reached by setting the 
moduli M(i) as:

 and the permeability modulus �(i) as:

The adopted poroelastic material parameters are listed 
in Table 1 (Cowin 1999), being Ks and Kf  the bulk moduli 
of the solid and fluid phases, respectively, and � and � the 
permeability moduli (24) and the Poisson’s coefficient, sup-
posed to be prescribed for all elements.

Although the procedure would allow to deal with ani-
sotropic materials, to highlight the effects of the fluid flow 
on the outcomes, the poroelastic media has been here sup-
posed to be simply isotropic. The bulk modulus for each i-th 

(22)𝛼(i)𝜀̇V +
1

M(i)
ṗ + 𝜅(i)∇2p = s

(23)

M(i) =
E(i)B(i)2

(
1 + �(i)

u

)

9
(
�
(i)
u − �(i)

) =
E
(
�(i)
u
− �(i)

)

�(m)2
(
1 − 2�(i)

)2(
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(i)
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)
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element of the meshed structure has been set as a function of 
the porosity by means of a power value q = 3 , that is

 being the procedure open to host a different constitutive law.

3 � Results and discussion

The first considered example structure, i.e., the beam subject 
to bending moment, has been meshed by 2593 elements and 
3325 nodes. The material of the beam has been set with a 
starting uniform distribution of density equal to 0.6 g

/
cm3 , 

with the aim of simulating bone tissue with an average den-
sity. The adopted material parameters, i.e., the porosity, the 
bulk modulus, and the Young modulus, are listed in Table 3.

(25)K(i) = Ks(1 − �)q

In the case of the second proposed example, i.e., the cyl-
inder subject to internal radial prescribed displacements, 
the structure has been meshed by 2304 elements and 2704 
nodes. In order to reduce the computational time, the mesh 
has been refined only in the central part of the cylinder and 
the internal trabecular and external cortical phases have been 
set with a starting uniform distributions of densities equal 

Fig. 3   Geometry and boundary conditions of the considered examples. Beam with rectangular cross section subject to bending moment at the 
extremities (up). Bi-phase hollow cylinder subject to internal radial prescribed displacements (down)

Table 3   Starting material parameters for trabecular and cortical bone 
tissue

Starting material parameters

Trabecular 
bone

Cortical bone

Density �[g/cm3] 0.6 2.1
Bulk modulus K [MPa] 290 14,000
Young modulus E [MPa] 435 21,230
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to 0.6 and 2.1g
/
cm3 , respectively, with the aim of replicat-

ing the features observed for the section of femoral diaphy-
sis. The corresponding porosity, the bulk modulus, and the 
Young modulus of the trabecular and cortical tissue are still 
listed in Table 3.

The numerical simulations have been performed with the 
aim of simulating the remodeling process during a period 
of 360 days. At the end of each iteration, once calculated 
the current value of the density for each element, the cor-
responding material properties have been consequently 
updated by using the Eq. (25).

Sensitivity analyses have been performed by refining 
mesh in the range of half and double of the adopted ele-
ment size. As the mesh size approached decreasing values, 
the obtained results showed increased accuracy and strong 
convergence for the outcomes from refined models. Further-
more, in order to avoid possible inaccuracy or concealed 
errors due to cumulative effects related to the continuous 
updating, at each iteration, of the remodeled bone poroelas-
tic properties, whose spatial gradients occurring at a given 
step of the remodeling could imply a mesh refining unnec-
essary at early stages of the analyses, some code lines were 
incorporated in the proposed remodeling algorithm to check 
that, at each step, the reorganization and the reassignment of 

the material properties were compatible with the mesh size 
established at the starting point of the procedure, forcing to 
update and refine locally the no longer appropriate mesh size 
if density and/or associated stress gradients appeared too 
high at a certain step wherever in the model.

In Fig. 4, the difference between the rates of density ṙ (up) 
along with the section h , and the comparisons of the results 
for the mass m of the structure (down) in case of Stanford 
law (red line) and our proposal (blue line), have been shown 
during the 1-year time of simulation.

It can be noted that the mass tendencies (see Fig. 4 down) 
result quite similar to that obtained by Stanford law (red 
line), with the highest difference of values at about 180 days. 
Despite the mass trend is comparable, it is worth to highlight 
that the surface representing the difference between the rate 
of density ṙ calculated when implementing the Stanford law 
and our proposal (see Fig. 4 up) results as asymmetrical 
along with the section of the beam with higher values where 
the beam is in tension (positive y ). The remodeling phenom-
enon tends to stabilize after 60–120 days for both formula-
tions, in accordance with the data present in the literature.

In Fig. 5, in the case of bi-phase hollow cylinder subject 
to internal radial prescribed displacements, the difference 
between the rate of density ṙ (up) along with the radius r 

Fig. 4   Plot of the difference 
between the rate of density ṙ 
along with the section h , calcu-
lated when implementing the 
Stanford law and our proposal 
(up) during the 1-year time of 
simulation. Plot of the com-
parisons of the mass m of the 
structure (down) for Stanford 
law (red line) and our proposal 
(blue line) during the 1-year 
time of simulation
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and the comparisons of the mass m of the structure (down) 
between Stanford law (red line) and our proposal (blue line), 
have been shown over the time period of 360 days.

In the case of the second proposed example, the mass 
obtained by our proposal (blue line) results much less than 
that obtained by Stanford law (red line) with a perceptual 
difference of about 33% at 360 days, as shown in the graph 
in Fig. 5 (down). Moreover, the difference between the rate 
of density ṙ (up) tends to stabilize after 120 days showing 
values about 2 �m∕day for both trabecular and cortical 
phase, according to the data present in literature.

3.1 � The effect of the bending moment

The applied bending moment produced zones where the 
fluid squeezes (the zone subject to compression) and others 
where the fluid accumulates (where the beam is in tension). 
As it can be argued from Fig. 3, the bending moment was 
applied in such a way to have the upper fibers of the beam, 
corresponding to the positive y-axis, compressed. As a con-
sequence of Darcy’s law, the fluid moved from the upper part 

(positive y-axis) to the lower part of the section (negative 
y-axis) of the beam.

As an indicator of the differences obtained by implement-
ing the remodeling formulations, the perceptual difference 
of the density Δ�% along with the height of the section has 
been taken into account as a reference, following the formula

Figure 6 shows the perceptual difference of the density 
Δ�% along with the height of the beam at 10 days (dotted 
line), 60 days (dashed line), 180 days (lighter blue line), and 
360 days (darker blue line).

Over the time period of 360 days, the negative and posi-
tive maximum values of Δ�% are placed in the zones where 
the beam was extended and compressed, respectively, as a 
consequence of the fluid moving from the upper to the lower 
part of the section.

In the upper part of Fig. 7, the density (continuous line) 
and the fluid content (dotted line) along with the height of 
the beam are plotted when implemented Stanford law (red) 
and our proposal (blue), at 10 days, 60 days, 180 days, and 

(26)Δ�% =
�Stanford Law − �proposal

�Stanford Law

%

Fig. 5   Plot of the difference 
between the rate of density ṙ 
along the radius r , calculated 
when implementing the Stan-
ford law and our proposal (up). 
Plot of the comparisons of the 
mass m of the structure between 
Stanford law (red line) and our 
proposal (blue line), in the case 
of an hollow cylinder subject to 
internal pressure for 360 days
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360 days. The corresponding contour plots are shown in the 
lower part of Fig. 7.

As an effect to the applied bending moment, in the case 
of both remodeling models, the material grows on the outer 
surfaces and absorbs in the central part of the beam. The 
density distribution produced by using the Stanford law 
(continuous red line) remains symmetrical during the time 
with highest and equal values at the outermost fibers. On the 
contrary, it is worth to highlight that the proposed formula-
tion, due to the direct effect of the fluid content—moved 
by pressure gradients and driving nutrients—leads to have 
asymmetry of the results in terms of spatial distribution of 
density during remodeling (continuous blue line). Also, the 
presence of the fluid varies the values of the stress stimu-
lus in both absorption and formation phases. In fact, the 
comparison with the Stanford law model reveals that, in the 
zones where the beam undergoes tensile regime, the dimen-
sionless fluid content results as positive and, in turn, the 
values of the rate of density are higher than that produced 
by Stanford law, with the final effect of denser material in 
the lower part of the beam and rare in the upper zones. Also, 
the stress stimulus at tissue level and the rate of remodeling 
resulted as asymmetrical when implementing our poroelas-
tic model. In particular, the presence of the fluid content 
enlarged the zone where the density reached lower values, as 
well as the zone where the stress and, as a consequence, the 
stress stimulus were low. This can be explained by the Eq. 
(1), where the stress stimulus depends on the local effective 
stress �i =

√
2EUi , being this measure of the stress always 

positive. As a consequence, the Stanford law is somehow 
transparent to the sign of the stress, being unfit to identify 
the zone where the beam is tensed or compressed and hence 
distributing the same amount of material independently from 
the sign of the stress. Noteworthy, the introduction of the 
poroelastic approach in the remodeling formulation brings 
out the sign of the stress, the fluid content playing the role of 

a mechanosensing mediator and so orienting asymmetrically 
the deposition/resorption process.

In Fig. 8, the comparison of the z-component of the 
strain calculated in the upper (dotted) and lower (continu-
ous) height section of the beam taking into account Stanford 
law (red) and our proposal (blue), has been shown during 
360 days.

The z-components of the strain resulted also asymmetri-
cal when implementing our proposal (blue line) and the pres-
ence of the fluid significantly modifies the trend during the 
time, with greater absolute values in the lower part of the 
section (continuous line) subject to tension.

3.2 � The effect of internal radial prescribed 
displacements

Figure 9 shows the perceptual difference of the density Δ�% 
between Stanford law and our proposal along with the radius 
of the cylinder at 10 days (dotted line), 60 days (dashed line), 
180 days (lighter blue line), and 360 days (darker blue line).

The maximum Δ�% resulted to be about + 6% at 10 days 
at the internal radius. During the time, the position along 
with the radius of the maximum perceptual difference 
moves toward the external cylinder, with values about 40% 
at 60 days, almost 80% at 180 days, and more than 80% at 
360 days.

In the upper part of Fig. 10, the density (continuous line) 
and the fluid content (dotted line) along with the radius of 
the cylinder are plotted when implemented Stanford law 
(red) and our proposal (blue), at 10 days, 60 days, 180 days, 
and 360 days. The corresponding contour plots are shown 
in the lower part of Fig. 10.

Independently from the specific numerical values imple-
mented in the analyses and obtained as results, it is worth to 
notice that the outcomes show that both formulations gave 
a thickening of the material up to the cortical value at the 
internal radius, however, in a faster way for the poroelastic 
model. Additionally, when implementing our formulation 
(continuous blue line), the density became quite symmetrical 
at 180 days with cortical density values at the internal and 
external radius. Conversely, when implementing the Stan-
ford law, the density reached the cortical value for most of 
the section.

Figure 11 shows the comparison between Stanford law 
(red) and our proposal (blue) of the cylindrical in-plane 
components of the stress, �r (dotted line) and �� (full line), 
plotted along with the radius of the cylinder at 10 days, 
60 days, 180 days, and 360 days.

The stress along with r resulted as always negative due to 
the compression prescribed by the internal radial displace-
ments, and with a null value at the external radius due to 
boundary conditions. After 10 days, �r was similar for both 
formulations. During the time, when implementing our 

Fig. 6   Plot of the perceptual difference of the density between 
Stanford law and our proposal along with the height of the beam at 
10  days (dotted line), 60  days (dashed line), 180  days (lighter blue 
line) and 360 days (darker blue line)
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proposal (blue line), the presence of the fluid produced lower 
negative values of the stress along with r.

The circumferential stress resulted as similar for both 
formulations at 10 days, and at 60 days showed a higher 

value at the internal radius when implementing our pro-
posed model. At 180 and 360 days, the circumferential 
stress values became again similar at the inner cylinder, 
reaching different distributions along with r and values 

Fig. 7   Plot of the density (continuous) and fluid content (dotted) 
when implemented Stanford law (red) and our proposal (blue), along 
with the height of the beam at 10 days 60 days, 180 and 360 days. 

Contour plots of the density and fluid content when implemented 
Stanford law (upper row) and our proposal (lower row), along with 
the height of the beam at 10 days 60 days, 180 and 360 days
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close to zero toward the outer radius when implementing 
our proposal. Therefore, also for this case, some quali-
tative discrepancies were registered by adopting the two 
models and the effect of the nutrients moved by the fluid 
flow influenced significantly the entire remodeling pro-
cess, both in terms of in time and spatial distribution of 
mass density and stresses.

3.2.1 � A real study case for testing the proposed model

A clinical trial at the Healthcare Center of the Icelandic 
National Hospital (Landspitali, Department of Science, 
Education and Innovation (DSEI) and Department of Ortho-
paedic Sciences) was launched, and a cohort of 36 patients 
undergoing primary Total Hip Arthroplasty (THA) was 
systematically monitored in the framework of an interna-
tional research project. The clinical trial provided to scan 
patients by means of a 64-slice spiral Computed Tomogra-
phy (CT) Philips Brilliance scanner three times in one year: 
before THA, immediately after surgery (24H), and finally at 
52 weeks post-surgery. The CT scanning region started from 
the iliac crest and ended at the middle of the femur; the slice 
thickness was 1 mm, the slice increment was 0.5 mm, and 
the tube voltage was set to 120 kV, allowing for precise 3D 

reconstructions of the regions of interest (Ricciardi et al., 
2020). As known, Computed Tomography is a methodology 
used to acquire volumetric densities of tissues. In principle, 
there are two basic concepts of generating Finite Element 
(FE) models from CT data: geometry-based and voxel-
based. The voxel-based meshing technique is achieved by 
matching each CT voxel to a single finite element, and the 
main advantage of this strategy is that it is a simple and 
automated technique. However, curved and smooth sur-
faces cannot be properly represented by brick elements, the 
jagged-edged surface for instance causing peak stresses and 
strains, which thus constitutes a disadvantage when accurate 
mechanical data are needed at those surfaces as well. Moreo-
ver, unstable elements (i.e., elements insufficiently anchored 
to the whole model and thus potentially involved in partial 
rigid body motion) can be generated during the 3D recon-
struction, which is a crucial problem in obtaining consistent 
FE models, hindering mechanical analyses (Esposito et al., 
2016). A patient from the above-mentioned cohort has been 
considered, and the related CT data at 24 h have been used 
to build-up the corresponding in silico model by means of 
the voxel-based approach. The obtained mesh consisted of 
about 500 k elements and associated 500 k nodes. Due to 
the high computational times related to poroelastic-based 

Fig. 8   Plot of the comparison 
of the z-components of the 
strain calculated in the upper 
and lower height section of the 
beam between Stanford law 
(red) and our proposal (blue) 
has been shown during 360 days

Fig. 9   Plot of the perceptual dif-
ference of the density between 
Stanford law and our proposal 
along with the radius of the 
cylinder at 10 days (dotted line), 
60 days (dashed line), 180 days 
(lighter blue line), and 360 days 
(darker blue line)
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remodeling analyses, the geometry-based meshing strategy 
was chosen, the extraction of the outer contours of bone 
and prosthesis from CT scans being obtained by applying a 
related Hounsfield Unit (HU)-based filter. Then, femurs were 
3D modeled and meshed using standard 10-node tetrahedral 
elements (three degrees of freedom associated to each node, 
with quadratic shape functions) in Ansys environment. The 
element size was set to 2 mm in the region of major inter-
est, i.e,. the trochanter zone, while the element mean size of 
8 mm in the remaining part of the model was adopted. The 
obtained mesh so resulted of 70 k elements and associated 
nodes. In order to derive the mechanical properties of the 
bone from the CT scan data, CT numbers or HU values were 
first converted into bone densities by means of a phantom 
calibration (Quasar Multi-Purpose Body Phantom) with 
known material densities scanned with the patients. Then, 
bone material properties, both elastic and porous param-
eters, were estimated from these data. The model was loaded 
by forces on the prosthesis cup by considering the actions 
related to the living daily activities (Bergmann et al., 2001) 
and constrained in the distal part of the model. Both the clas-
sical Stanford’s law and our proposal were implemented in 
the FE-based algorithm, performing the numerical simula-
tions for a period of 360 days, finally comparing the results 
of the two models. The density data extracted from the real 
bone at 1 year have been used as a benchmark. Figure 12 
shows the numerical models obtained with the voxel-based 
(left) and the geometry-based (right) strategies.

Figure 13 shows the whole three-dimensional femur 
obtained by filtering CT data (left), the maps of the density 
of the considered transverse section at 24H (top-middle) and 
1Y (bottom-middle), and the corresponding plot of the den-
sities obtained by CT data along a line from the innermost 
to outermost points across a femur region actually interested 
by significant changes in bone density, with clear spatially 
inhomogeneous transition from cortical to trabecular tissues. 
Note that the dashed red line identifies the transverse sec-
tion in the trochanter region, while the results have been 
calculated along the path described by the full red lines in 
the sections at the center. It is then worth highlighting the 
differences between the curves related to the density at 24H 
and 1Y. In particular, the density at 1Y grows up near the 
prosthesis with an increment of about 30% and an approxi-
mately 10% decrement in the bone’s outer part.

The results are synthetically illustrated in terms of the 
bone densities. In particular, Fig. 14 shows the comparison 
between the predictions from Stanford law (red) and from 
our proposal (blue) as densities along the transverse section 
of the femur in the trochanter region at 10 days, 60 days, 
180 days and 360 days.

The results show that both the model approaches pro-
duced a denser bone at the interface with the prosthesis. 
However, when implementing the Stanford law, the simu-
lated remodeling process predicts values of density close 
to those of the cortical bone in the whole section, starting 
from the outcomes at 60 days and up to one year, in contrast 
to the actual density distribution one year after the implant. 
On the contrary, the proposed poroelastic-based remodeling 
strategy—which accounts for the role of pore pressure and 
fluid-driven nutrient walkway, in turn influencing the den-
sity rate – seems instead affect growth and remodeling, the 
densities curves replicating more faithfully the actual bone 
density profile measured at one year along the selected line 
of the femur slice of the benchmark.

It must be highlighted that, despite the very encouraging 
obtained results, the a priori setting of the crucial parameter 
p of the proposed model would deserve a deeper discussion, 
for example by designing an experiment to be performed 
in vitro, a topic that is, however, beyond the scope of the 
present work.

4 � Conclusions

The work presented an improved version of the classical 
so-called Stanford’s law, widely employed to predict the 
time-dependent evolution of the bone density in response 
to load-induced mechanical stimuli, mediated by the stress 
field ingenerated within the tissue day-by-day. By neglect-
ing elastic anisotropy and with the aim of capturing some 
experimentally observed asymmetries in bone mass redis-
tribution, even when in the presence of symmetrical stress 
states, we proposed to enrich the standard Stanford’s law 
by coupling the direct effect of the stress stimulus on bone 
growth with the spatially inhomogeneous nutrient supply 
kindled by pressure gradients inside the bone, modeled as a 
poroelastic medium. By following this way, stress and fluid 
flow synergistically allowed to reproduce medium/long-term 
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asymmetries and more realistic outcomes in terms of mass 
rate and bone tissue remodeling. To highlight quantitative as 

well as qualitative differences in the remodeling outcomes 
when adopting the classical and the proposed models, two 
study cases, i.e., a ring under axis-symmetrical conditions 
and a plate under pure bending, were built up and numeri-
cally solved as the simplest paradigms of benchmark remod-
eling problems, which gave symmetrical results when adopt-
ing standard approaches based on Stanford’s law, giving 
instead non-symmetrical and biophysically coherent results 
in terms of bone density spatial distribution, if the classical 

Fig. 10   Plot of the density (continuous) and fluid content (dotted) 
when implemented Stanford law (red) and our proposal (blue), along 
with the height of the beam at 10 days 60 days, 180, and 360 days. 
Contour plots of the density and fluid content when implemented 
Stanford law (upper row) and our proposal (lower row), along with 
the height of the beam at 10 days 60 days, 180 and 360 days

◂

Fig. 11   Plot of the comparison between Stanford law (red) and our proposal (blue) of the cylindrical in-plane components of the stress �r (dotted 
line) and �� (full line), along with the radius of the cylinder at 10 days, 60 days, 180 days, and 360 days
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Stanford’s law was enriched by taking into account the role 
of the fluid transporting nutrients throughout the poroelastic 
bone medium. These two examples, which somehow evoked 
the cross section of a femur pushed from the inner by the 
pressure exerted by a femur prosthesis stem and a tract of 
bone under classical bending regime as experienced in vivo 
during oscillatory loading, were therefore crucial to high-
light, in the easiest way, the important capability of the pro-
posed strategy of reproducing symmetry breaking of bone 
density distribution resulting from the cooperation of stress 
and fluids, not ever considered in previous studies.

Although limitations still characterize some hypotheses at 
the basis of the present approach, the proposed model over-
comes the intrinsic—and unrealistic—independence of the 
bone remodeling from the stress sign and from the indirect 
effect of stress gradients driving nutrients through the flow 
of the fluid content in the tissue, allowing to predict impor-
tant spatial asymmetries in bone mass density, so paving 
the way to more reliable mechanobiological strategies and 
engineering tools for the faithful prediction of bone remod-
eling, with implications in diagnosis of risk fracture, optimal 
design of bone prostheses, and precise medicine.

Fig. 12   The voxel-based (left) and geometry-based (right) models

Fig. 13   The whole femur (left), the maps of the actual density over the considered transverse sections in the trochanter region at 24H (top-mid-
dle) and 1Y (bottom-middle), and the corresponding plot of the densities obtained by CT data
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