1,004 research outputs found

    Observation of a push force on the end face of a nm fiber taper exerted by outgoing light

    Full text link
    There are two different proposals for the momentum of light in a transparent dielectric of refractive index n: Minkowski's version nE/c and Abrahm's version E/(nc), where E and c are the energy and vacuum speed of light, respectively. Despite many tests and debates over nearly a century, momentum of light in a transparent dielectric remains controversial. In this Letter, we report a direct observation of the inward push force on the end face of a free nm fiber taper exerted by the outgoing light. Our results clearly support Abraham momentum. Our experiment also indicates an inward surface pressure on a dielectric exerted by the incident light, different from the commonly recognized pressure due to the specular reflection. Such an inward surface pressure by the incident light may be useful for precise design of the laser-induced inertially-confined fusion.Comment: 9 pages, 3 figures;Accepted for publication as a Letter in Physical Review Letters(CODE: LP11093

    The Red Queen visits Minkowski Space

    Get PDF
    When Alice went `Through the Looking Glass' [1], she found herself in a situation where she had to run as fast as she could in order to stay still. In accordance with the dictum that truth is stranger than fiction, we will see that it is possible to find a situation in special relativity where running towards one's target is actually counter-productive. Although the situation is easily analysed algebraically, the qualitative properties of the analysis are greatly illuminated by the use of space-time diagrams

    Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

    Full text link
    Peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed analyzing the experimental data on processes ππππ,KKˉ\pi\pi\to\pi\pi,K\bar{K} in the IGJPC=0+0++I^GJ^{PC}=0^+0^{++} channel in a model-independent approach based on analyticity and unitarity and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ\pi\pi scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the PDG tables as preferred. However, in this case, first, representation of the ππ\pi\pi background is unsatisfactory; second, the data on the coupled process ππKKˉ\pi\pi\to K\bar{K} are not well described even qualitatively above 1.15 GeV when using the resonance parameters from the only ππ\pi\pi scattering analysis. The combined analysis of these coupled processes is needed, which is carried out satisfactorily. Then both above-indicated flaws, related to the analysis of solely the ππ\pi\pi-scattering, are cured. The most remarkable change of parameters with respect to the values of only ππ\pi\pi scattering analysis appears for the mass of the f0(600)f_0 (600) which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-NcN_c consistency conditions between the unitarization and resonance saturation. The obtained ππ\pi\pi-scattering length a00a_0^0 in case when we restrict to the analysis of the ππ\pi\pi scattering or consider so-called A-solution (with a lower mass and width of f0(600)f_0(600) meson) agrees well with prediction of chiral perturbation theory (ChPT) and with data extracted at CERN by the NA48/2 Collaboration from the analysis of the Ke4K_{e4} decay and by the DIRAC Collaboration from the measurement of the π+π\pi^+\pi^- lifetime.Comment: 21 pages, 3 figures, 6 table

    Quantum Vacuum Contribution to the Momentum of the Dielectric Media

    Full text link
    Momentum transfer between matter and electromagnetic field is analyzed. The related equations of motion and conservation laws are derived using relativistic formalism. Their correspondence to various, at first sight self-contradicting, experimental data (the so called Abraham-Minkowski controversy) is demonstrated. A new, Casimir like, quantum phenomenon is predicted: contribution of vacuum fluctuations to the motion of dielectric liquids in crossed electric and magnetic fields. Velocities about 50nm/s50nm/s can be expected due to the contribution of high frequency vacuum modes

    A Potential Foundation for Emergent Space-Time

    Get PDF
    We present a novel derivation of both the Minkowski metric and Lorentz transformations from the consistent quantification of a causally ordered set of events with respect to an embedded observer. Unlike past derivations, which have relied on assumptions such as the existence of a 4-dimensional manifold, symmetries of space-time, or the constant speed of light, we demonstrate that these now familiar mathematics can be derived as the unique means to consistently quantify a network of events. This suggests that space-time need not be physical, but instead the mathematics of space and time emerges as the unique way in which an observer can consistently quantify events and their relationships to one another. The result is a potential foundation for emergent space-time.Comment: The paper was originally titled "The Physics of Events: A Potential Foundation for Emergent Space-Time". We changed the title (and abstract) to be more direct when the paper was accepted for publication at the Journal of Mathematical Physics. 24 pages, 15 figure

    Estimates of the optimal density and kissing number of sphere packings in high dimensions

    Full text link
    The problem of finding the asymptotic behavior of the maximal density of sphere packings in high Euclidean dimensions is one of the most fascinating and challenging problems in discrete geometry. One century ago, Minkowski obtained a rigorous lower bound that is controlled asymptotically by 1/2d1/2^d, where dd is the Euclidean space dimension. An indication of the difficulty of the problem can be garnered from the fact that exponential improvement of Minkowski's bound has proved to be elusive, even though existing upper bounds suggest that such improvement should be possible. Using a statistical-mechanical procedure to optimize the density associated with a "test" pair correlation function and a conjecture concerning the existence of disordered sphere packings [S. Torquato and F. H. Stillinger, Experimental Math. {\bf 15}, 307 (2006)], the putative exponential improvement was found with an asymptotic behavior controlled by 1/2(0.77865...)d1/2^{(0.77865...)d}. Using the same methods, we investigate whether this exponential improvement can be further improved by exploring other test pair correlation functions correponding to disordered packings. We demonstrate that there are simpler test functions that lead to the same asymptotic result. More importantly, we show that there is a wide class of test functions that lead to precisely the same exponential improvement and therefore the asymptotic form 1/2(0.77865...)d1/2^{(0.77865...)d} is much more general than previously surmised.Comment: 23 pages, 4 figures, submitted to Phys. Rev.

    Minkowski's Footprint revisited. Planetary Nebula formation from a single sudden event?

    Get PDF
    M1-92 can be considered an archetype of bipolar pre-planetary nebulae. It shows a clear axial symmetry, along with the kinematics and momentum excess characteristic of this class of envelopes around post-AGB stars. By taking advantage of the new extended configuration of the IRAM Plateau de Bure interferometer, we wanted to study the morphology and velocity field of the molecular gas better in this nebula, particularly in its central part. We performed sub-arcsecond resolution interferometric observations of the J=2-1 rotational line 13CO M1-92. We found that the equatorial component is a thin flat disk, which expands radially with a velocity proportional to the distance to the center. The kinetic age of this equatorial flow is very similar to that of the two lobes. The small widths and velocity dispersion in the gas forming the lobe walls confirm that the acceleration responsible for the nebular shape could not last more than 100-120 yr. The present kinematics of the molecular gas can be explained as the result of a single brief acceleration event, after which the nebula reached an expansion velocity field with axial symmetry. In view of the similarity to other objects, we speculate on the possibility that the whole nebula was formed as a result of a magneto-rotational explosion in a common-envelope system.Comment: 4 pages (2 figures

    A Dense Packing of Regular Tetrahedra

    Full text link
    We construct a dense packing of regular tetrahedra, with packing density D>>.7786157D > >.7786157.Comment: full color versio

    HST Images and KPNO Spectroscopy of the Binary Black Hole Candidate SDSS J153636.22+044127.0

    Full text link
    We present HST WFPC2/PC images and KPNO 4-m longslit spectroscopy of the QSO SDSS J153636.22+044127.0, which we advanced as a candidate binary supermassive black hole. The images reveal a close companion coincident with the radio source identified by Wrobel & Laor (2009). It appears to be consistent with a M_g ~ -21.4 elliptical galaxy, if it is at the QSO redshift. The spectroscopy, however, shows no spatial offset of the red or blue Balmer line subcomponents. The companion is thus not the source of either the red or blue broad line systems; SDSS J153636.22+044127.0 cannot be explained as a chance superposition of objects, or as an ejected black hole. Over the Delta T=0.75 yr difference between the rest frame epochs of the present and SDSS spectroscopy, we find no velocity shift to within 40 km/s, nor any amplitude change in either broad line system. The lack of a shift can be admitted under the binary hypothesis if the implied radial velocity is a larger component of the full orbital velocity than was assumed in our earlier work. A strong test of the binary hypothesis requires yet longer temporal baselines. The lack of amplitude variations is unusual for the alternative explanation of this object as a "double-peaked" emitter; we further argue that SDSS J153636.22+044127.0 has unique spectral features that have no obvious analogue with other members of this class.Comment: 19 pages, 7 figures, revised and accepted for publication in Ap

    Is the Cygnus Loop two supernova remnants?

    Full text link
    The Cygnus Loop is classified as a middle-aged supernova remnant (SNR) located below the Galactic equator (l=74, b=-8.6) and 770 pc away from us. Its large size and little confusion with Galactic emission makes it an ideal test ground for evolutionary and structural theories of SNRs. New radio continuum mapping of the Cygnus Loop at 2695 MHz with the Effelsberg 100-m telescope provides indications that the Cygnus Loop consists of two separate SNRs. Combining this result with data from the literature we argue that a secondary SNR exists in the south with a recently detected neutron star close to its center. Two interacting SNRs seem to be the best explanation to account for the Cygnus Loop observations at all wavelengths.Comment: 4 pages, 2 figures, Astron. Astrophys., accepte
    corecore