77 research outputs found

    Neuropsychiatry of movement disorders

    Get PDF

    STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources

    Get PDF
    Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds \sim25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor \sim3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise.Comment: Accepted. Data and scripts to reproduce main results is publicly available. The code for the STROOPWAFEL algorithm will be made publicly available. Early inquiries can be addressed to the lead autho

    Progress in research on Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a heritable neuropsychiatric disorder commonly complicated by obsessions and compulsions, but defined by frequent unwanted movements (motor tics) and vocalizations (phonic tics) that develop in childhood or adolescence. In recent years, research on TS has progressed rapidly on several fronts. Inspired by the Fifth International Scientific Symposium on Tourette Syndrome, the articles in this special issue review advances in the phenomenology, epidemiology, genetics, pathophysiology, and treatment of TS

    Pilot Testing Behavior Therapy for Chronic Tic Disorders in Neurology and Developmental Pediatrics Clinics

    Get PDF
    Comprehensive Behavioral Intervention for Tics (CBIT) is an efficacious treatment with limited regional availability. As neurology and pediatric clinics are often the first point of therapeutic contact for individuals with tics, the present study assessed preliminary treatment response, acceptability, and feasibility of an abbreviated version, modified for child neurology and developmental pediatrics clinics. Fourteen youth (9-17) with Tourette disorder across 2 child neurology clinics and one developmental pediatrics clinic participated in a small case series. Clinician-rated tic severity (Yale Global Tic Severity Scale) decreased from pre- to posttreatment, z = –2.0, P \u3c .05, r = –.48, as did tic-related impairment, z = –2.4, P \u3c .05, r = –.57. Five of the 9 completers (56%) were classified as treatment responders. Satisfaction ratings were high, and therapeutic alliance ratings were moderately high. Results provide guidance for refinement of this modified CBIT protocol

    Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia

    Get PDF
    The putamen has a somatotopic organization of neurons identified by correspondence of firing rates with selected body part movements, as well as by complex, but organized, differential cortical projections onto putamen. In isolated focal dystonia, whole putaminal binding of dopamine D(2)-like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of the putamen are differentially affected depending upon the body part affected by dystonia. The radioligand [(18)F]spiperone binds predominantly to D(2)-like receptors in striatum. We hypothesized that the spatial location of [(18)F]spiperone binding within the putamen would differ in patients with dystonia limited to the hand versus the face, and we tested that hypothesis using positron emission tomography and magnetic resonance imaging. To address statistical and methodological concerns, we chose a straightforward but robust image analysis method. An automated algorithm located the peak location of [(18)F]spiperone binding within the striatum, relative to a brain atlas, in each of 14 patients with cranial dystonia and 8 patients with hand dystonia. The mean (left and right) |x|, y, and z coordinates of peak striatal binding for each patient were compared between groups by t test. The location of peak [(18)F]spiperone binding within the putamen differed significantly between groups (cranial dystonia z<hand dystonia z, p = 0.016). We conclude that in isolated focal dystonia, dopamine D(2)-like receptors are distributed differently in the putamen depending on the body part manifesting dystonia

    Treatment Use Among Children with Tourette Syndrome Living in The United States, 2014

    Get PDF
    Treatment of Tourette syndrome (TS) can be complicated by changes over time in tic expression, severity, and co-occurring disorders. Using the 2014 National Survey of the Diagnosis and Treatment of ADHD and Tourette Syndrome, this study provides descriptive estimates of the use of behavioral interventions and medication among children living with TS. Parent-reported data on 115 children aged 5–17 years ever diagnosed with TS were analyzed to provide descriptive, unweighted results. Overall, 77.4% of children had current or past use of any TS treatment; 59.1% ever used behavioral interventions and 56.1% had ever taken TS medication. Children with moderate” or “severe” versus “mild” TS, ≥1 co-occurring disorders, and tics that interfered with functioning were significantly more likely to have used one or more TS treatments. Side effects were reported for 84.4% of children who took TS medication. Most parents of children with current TS (87.2%) were satisfied with the management of their child\u27s TS. However, parents of children with “moderate” or “severe” current TS were significantly more dissatisfied compared to parents of children with “mild” TS. Findings from this study could be used to inform efforts to support children living with TS and their families

    Mid-to-Late M Dwarfs Lack Jupiter Analogs

    Full text link
    Cold Jovian planets play an important role in sculpting the dynamical environment in which inner terrestrial planets form. The core accretion model predicts that giant planets cannot form around low-mass M dwarfs, although this idea has been challenged by recent planet discoveries. Here, we investigate the occurrence rate of giant planets around low-mass (0.1-0.3M_\odot) M dwarfs. We monitor a volume-complete, inactive sample of 200 such stars located within 15 parsecs, collecting four high-resolution spectra of each M dwarf over six years and performing intensive follow-up monitoring of two candidate radial-velocity variables. We use TRES on the 1.5 m telescope at the Fred Lawrence Whipple Observatory and CHIRON on the Cerro Tololo Inter-American Observatory 1.5 m telescope for our primary campaign, and MAROON-X on Gemini North for high-precision follow-up. We place a 95%-confidence upper limit of 1.5% (68%-confidence limit of 0.57%) on the occurrence of MPM_{\rm P}sini>i > 1MJ_{\rm J} giant planets out to the water snow line and provide additional constraints on the giant planet population as a function of MPM_{\rm P}sinii and period. Beyond the snow line (100100 K <Teq<150< T_{\rm eq} < 150 K), we place 95%-confidence upper limits of 1.5%, 1.7%, and 4.4% (68%-confidence limits of 0.58%, 0.66%, and 1.7%) for 3MJ<MP_{\rm J} < M_{\rm P}sini<10i < 10MJ_{\rm J}, 0.8MJ<MP_{\rm J} < M_{\rm P}sini<3i < 3MJ_{\rm J}, and 0.3MJ<MP_{\rm J} < M_{\rm P}sini<0.8i < 0.8MJ_{\rm J} giant planets; i.e., Jupiter analogs are rare around low-mass M dwarfs. In contrast, surveys of Sun-like stars have found that their giant planets are most common at these Jupiter-like instellations.Comment: Accepted for publication in AJ; 19 pages, 5 figures, 2 table

    GJ 3236: a new bright, very low-mass eclipsing binary system discovered by the MEarth observatory

    Full text link
    We report the detection of eclipses in GJ 3236, a bright (I = 11.6) very low mass binary system with an orbital period of 0.77 days. Analysis of light- and radial velocity curves of the system yielded component masses of 0.38 +/- 0.02 and 0.28 +/- 0.02 Msol. The central values for the stellar radii are larger than the theoretical models predict for these masses, in agreement with the results for existing eclipsing binaries, although the present 5% observational uncertainties limit the significance of the larger radii to approximately 1 sigma. Degeneracies in the light curve models resulting from the unknown configuration of surface spots on the components of GJ 3236 currently dominate the uncertainties in the radii, and could be reduced by obtaining precise, multi-band photometry covering the full orbital period. The system appears to be tidally synchronized and shows signs of high activity levels as expected for such a short orbital period, evidenced by strong Halpha emission lines in the spectra of both components. These observations probe an important region of mass-radius parameter space around the predicted transition to fully-convective stellar interiors, where there are a limited number of precise measurements available in the literature.Comment: 14 pages, 5 figures, 10 tables, emulateapj format. Accepted for publication in Ap

    Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc

    Get PDF
    We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of 1.380.12+0.13{1.38}_{-0.12}^{+0.13} R{R}_{\oplus }, an orbital period of 5.358820.00031+0.00030{5.35882}_{-0.00031}^{+0.00030} days, and an equilibrium temperature of 43327+28{433}_{-27}^{+28} K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 M{M}_{\oplus } on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip

    Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients

    Get PDF
    Background: CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. Methods: An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. Results: Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). Conclusion: This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available
    corecore