12 research outputs found

    Co-bedding as a Comfort measure For Twins undergoing painful procedures (CComForT Trial)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-bedding, a developmental care strategy, is the practice of caring for diaper clad twins in one incubator (versus separating and caring for each infant in separate incubators), thus creating the opportunity for skin-to-skin contact and touch between the twins. In studies of mothers and their infants, maternal skin-to-skin contact has been shown to decrease procedural pain response according to both behavioral and physiological indicators in very preterm neonates. It is uncertain if this comfort is derived solely from maternal presence or from stabilization of regulatory processes from direct skin contact. The intent of this study is to compare the comfort effect of co-bedding (between twin infants who are co-bedding and those who are not) on infant pain response and physiologic stability during a tissue breaking procedure (heelstick).</p> <p>Methods/Design</p> <p>Medically stable preterm twin infants admitted to the Neonatal Intensive Care Unit will be randomly assigned to a co-bedding group or a standard care group. Pain response will be measured by physiological and videotaped facial reaction using the Premature Infant Pain Profile scale (PIPP). Recovery from the tissue breaking procedure will be determined by the length of time for heart rate and oxygen saturation to return to baseline. Sixty four sets of twins (n = 128) will be recruited into the study. Analysis and inference will be based on the intention-to-treat principle.</p> <p>Discussion</p> <p>If twin contact while co-bedding is determined to have a comforting effect for painful procedures, then changes in current neonatal care practices to include co-bedding may be an inexpensive, non invasive method to help maintain physiologic stability and decrease the long term psychological impact of procedural pain in this high risk population. Knowledge obtained from this study will also add to existing theoretical models with respect to the exact mechanism of comfort through touch.</p> <p>Trial registration</p> <p>NCT00917631</p

    Waste dump erosional landform stability – a critical issue for mountain mining

    Get PDF
    Mining is the largest producer of solid wastes which, when released to land or into waterways, can cause harmful environmental impacts. This is mostly due to fluvial erosion, which is highly increased in mountain areas, due to abrupt slopes. We have analysed this situation at a mountain watershed (192 ha), where steep mined sites and their waste dumps are the main source of sediment in a Natural Park. This problem was tackled by building gabion check dams downstream from the mined sites. We used the DEM of Differences (DoD) method to quantify erosion and sediment yield from three waste dumps (5 ha). Their topography and substrate properties were analysed to understand the erosion problem. The sediment trapped by the check dams was quantified by Electrical Resistivity Tomography. The rainfall characteristics triggering an episode that filled the check dams with sediment in the winter of 2009-2010, were studied to confirm whether it was a case of extreme precipitation conditions. The waste dumps sediment yield (353 ± 95 Mg ha-1 yr-1) suggests severe landform instability. Analysis of topographic and substrate properties confirmed long, steep slopes combined with highly erodible materials. The check dams proved to be inefficient in controlling sediment loads, as they had only functioned for four years of 31 of existence, having trapped 13000 ± 660 m3 of sediment, whereas we estimated that the waste dumps have yielded approximately three times more sediment for the same period. Rainfall analyses showed that neither intense nor extreme conditions (return period of 25-35 years) triggered the mobilization of 37 ± 2 Mg ha-1 in a month. This study highlights the fact that mining operations in similar mountainous settings, with equivalent waste dump construction and reclamation practices, are currently unfeasible. We conclude that landform stability cannot be achieved at this site without landform changes
    corecore