356 research outputs found

    Sturm-liouville problems and Hammerstein operators

    Get PDF
    It is shown that a generally complex-valued function of a real variable is a solution of a classical Sturm- Liouville eigenvalue problem if and only if a related twoparameter eigenvalue problem for a pair of integral operators, one of which is of Hammerstein type, admits a real solution belonging to a cone in a Krein space

    Analysis of the first IPTA Mock Data Challenge by the EPTA timing data analysis working group

    Get PDF
    This is a summary of the methods we used to analyse the first IPTA Mock Data Challenge (MDC), and the obtained results. We have used a Bayesian analysis in the time domain, accelerated using the recently developed ABC-method which consists of a form of lossy linear data compression. The TOAs were first processed with Tempo2, where the design matrix was extracted for use in a subsequent Bayesian analysis. We used different noise models to analyse the datasets: no red noise, red noise the same for all pulsars, and individual red noise per pulsar. We sampled from the likelihood with four different samplers: "emcee", "t-walk", "Metropolis-Hastings", and "pyMultiNest". All but emcee agreed on the final result, with emcee failing due to artefacts of the high-dimensionality of the problem. An interesting issue we ran into was that the prior of all the 36 (red) noise amplitudes strongly affects the results. A flat prior in the noise amplitude biases the inferred GWB amplitude, whereas a flat prior in log-amplitude seems to work well. This issue is only apparent when using a noise model with individually modelled red noise for all pulsars. Our results for the blind challenges are in good agreement with the injected values. For the GWB amplitudes we found h_c = 1.03 +/- 0.11 [10^{-14}], h_c = 5.70 +/- 0.35 [10^{-14}], and h_c = 6.91 +/- 1.72 [10^{-15}], and for the GWB spectral index we found gamma = 4.28 +/- 0.20, gamma = 4.35 +/- 0.09, and gamma = 3.75 +/- 0.40. We note that for closed challenge 3 there was quite some covariance between the signal and the red noise: if we constrain the GWB spectral index to the usual choice of gamma = 13/3, we obtain the estimates: h_c = 10.0 +/- 0.64 [10^{-15}], h_c = 56.3 +/- 2.42 [10^{-15}], and h_c = 4.83 +/- 0.50 [10^{-15}], with one-sided 2 sigma upper-limits of: h_c <= 10.98 [10^{-15}], h_c <= 60.29 [10^{-15}], and h_c <= 5.65 [10^{-15}]

    A data analysis library for gravitational wave detection

    No full text
    One of the main goals of Pulsar Timing Arrays (PTAs) is the direct detection of gravitational waves (GWs). A first detection will be a major leap for astronomy and substantial effort is currently going into timing as many pulsars as possible, with the highest possible accuracy. As part of the individual PTA projects, several groups are developing data analysis methods for the final stage of a gravitational-waves search pipeline: the analysis of the timing residuals. Here we report the progress of on-going work to develop, within a Bayesian framework, a comprehensive and user friendly analysis library to search for gravitational waves in PTA data

    Control of cellular automata

    Full text link
    We study the problem of master-slave synchronization and control of totalistic cellular automata (CA) by putting a fraction of sites of the slave equal to those of the master and finding the distance between both as a function of this fraction. We present three control strategies that exploit local information about the CA, mainly, the number of nonzero Boolean derivatives. When no local information is used, we speak of synchronization. We find the critical properties of control and discuss the best control strategy compared with synchronization

    Sturm-Liouville operators on time scales

    Full text link
    We establish the connection between Sturm-Liouville equations on time scales and Sturm--Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm-Liouville equations on time scales which have been obtained by various authors in the past.Comment: 12 page

    The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries

    Full text link
    Supermassive black hole binaries (SMBHBs) in the 10 million to 10 billion MM_\odot range form in galaxy mergers, and live in galactic nuclei with large and poorly constrained concentrations of gas and stars. There are currently no observations of merging SMBHBs--- it is in fact possible that they stall at their final parsec of separation and never merge. While LIGO has detected high frequency GWs, SMBHBs emit GWs in the nanohertz to millihertz band. This is inaccessible to ground-based interferometers, but possible with Pulsar Timing Arrays (PTAs). Using data from local galaxies in the 2 Micron All-Sky Survey, together with galaxy merger rates from Illustris, we find that there are on average 91±791\pm7 sources emitting GWs in the PTA band, and 7±27\pm2 binaries which will never merge. Local unresolved SMBHBs can contribute to GW background anisotropy at a level of 20%\sim20\%, and if the GW background can be successfully isolated, GWs from at least one local SMBHB can be detected in 10 years.Comment: submitted to Nature Astronomy (reformatted for arXiv

    Electro-clinical and neurodevelopmental outcome in six children with early diagnosis of tuberous sclerosis complex and role of the genetic background

    Get PDF
    Background: Seizures in individuals affected by tuberous sclerosis complex (TSC) commonly develop in the first year of life, are often preceded by a progressive deterioration of the electroencephalogram (EEG), and likely influence developmental outcome. Although early diagnosis of TSC has offered a tremendous opportunity to monitor affected patients before seizure onset, reports of the neurological manifestations of TSC in infants before seizure onset are still scarce. Here we describe early EEG activity, clinical and genetic data and developmental assessment in a group of TSC infants, with the aim of identifying possible prognostic factors for neurodevelopmental outcome. Methods: We report on six infants diagnosed with TSC pre-or perinatally, who underwent serial Video-EEG recordings during the first two years of life. EEGs were classified based on distribution and intensity of interictal epileptiform discharges, and Vigabatrin was introduced in case of ictal discharges. Psychomotor development, cognitive functioning and behavioral problems were assessed through standardized scales. Molecular testing included analysis for point mutations and deletions/duplications in TSC1 and TSC2. Results: EEG abnormalities appeared at a mean age of 4 months. Four of the six patients developed seizures. EEG abnormalities preceded the onset of clinical seizures in all of them. The two individuals with good seizure control showed normal development, while the other two exhibited psychomotor delays. The patients who did not develop seizures had normal development. A pathogenic variant in the TSC2 gene was detected in all patients but one. The one without a mutation identified did not develop seizures and showed normal neurodevelopment. Of note, the two patients presenting with the worst outcome (that is, poor seizure control and intellectual/behavioral disability) both carried pathogenic variants in the GAP domain of TSC2. Conclusion: Our report supports the importance of EEG monitoring before seizure onset in patients with TSC, and the correlation between prompt seizure control and positive neurodevelopmental outcome, regardless of seizure type. Our results also indicate a possible role of the genetic background in influencing the outcome

    Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices

    Full text link
    We give a uniform interpretation of the classical continuous Chebyshev's and Hahn's orthogonal polynomials of discrete variable in terms of Feigin's Lie algebra gl(N), where N is any complex number. One can similarly interpret Chebyshev's and Hahn's q-polynomials and introduce orthogonal polynomials corresponding to Lie superlagebras. We also describe the real forms of gl(N), quasi-finite modules over gl(N), and conditions for unitarity of the quasi-finite modules. Analogs of tensors over gl(N) are also introduced.Comment: 25 pages, LaTe

    Observing the dynamics of super-massive black hole binaries with Pulsar Timing Arrays

    Full text link
    Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.Comment: 5 pages, 1 figur

    Gravitational wave astronomy with the SKA

    Full text link
    On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carrying out observing programmes to detect GWs, with data sets being shared through the International Pulsar Timing Array project. One of the most likely sources of low frequency GWs are supermassive black hole binaries (SMBHBs), detectable as a background due to a large number of binaries, or as continuous or burst emission from individual sources. No GW signal has yet been detected, but stringent constraints are already being placed on galaxy evolution models. The SKA will bring this research to fruition. In this chapter, we describe how timing observations using SKA1 will contribute to detecting GWs, or can confirm a detection if a first signal already has been identified when SKA1 commences observations. We describe how SKA observations will identify the source(s) of a GW signal, search for anisotropies in the background, improve models of galaxy evolution, test theories of gravity, and characterise the early inspiral phase of a SMBHB system. We describe the impact of the large number of millisecond pulsars to be discovered by the SKA; and the observing cadence, observation durations, and instrumentation required to reach the necessary sensitivity. We describe the noise processes that will influence the achievable precision with the SKA. We assume a long-term timing programme using the SKA1-MID array and consider the implications of modifications to the current design. We describe the possible benefits from observations using SKA1-LOW. Finally, we describe GW detection prospects with SKA1 and SKA2, and end with a description of the expectations of GW astronomy.Comment: 19 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)03
    corecore