
ar
X

iv
:1

30
1.

66
73

v1
  [

as
tr

o-
ph

.I
M

] 
 2

8 
Ja

n 
20

13

Analysis of the first IPTA Mock Data
Challenge by the EPTA timing data analysis

working group

RUTGER VAN HAASTEREN ∗

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover, Germany

CHIARA M. F. MINGARELLI AND ALBERTO VECCHIO

School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ANTOINE LASSUS

LPC2E,CNRS, Université d’Orléans
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Abstract

This is a summary of the methods we used to analyse the first IPTA Mock Data Challenge (MDC),
and the obtained results. We have used a Bayesian analysis in the time domain, accelerated using

the recently developed ABC-method which consists of a form of lossy linear data compression. The

TOAs were first processed with Tempo2, where the design matrix was extracted for use in a subse-
quent Bayesian analysis. We used different noise models to analyse the datasets: no red noise, red

noise the same for all pulsars, and individual red noise per pulsar. We sampled from the likelihood

with four different samplers: “emcee”, “t-walk”, “Metropolis-Hastings”, and “pyMultiNest”. All but
emcee agreed on the final result, with emcee failing due to artefacts of the high-dimensionality

of the problem. An interesting issue we ran into was that the prior of all the 36 (red) noise am-
plitudes strongly affects the results. A flat prior in the noise amplitude biases the inferred GWB

amplitude, whereas a flat prior in log-amplitude seems to work well. This issue is only apparent

when using a noise model with individually modelled red noise for all pulsars. Our results for
the blind challenges are in good agreement with the injected values. For the GWB amplitudes we

found hc = 1.03 ± 0.11[×10−14], hc = 5.70± 0.35[×10−14], and hc = 6.91 ± 1.72[×10−15], and for

the GWB spectral index we found γ = 4.28 ± 0.20, γ = 4.35± 0.09, and γ = 3.75 ± 0.40. We note
that for closed challenge 3 there was quite some covariance between the signal and the red noise:

if we constrain the GWB spectral index to the usual choice of γ = 13/3, we obtain the estimates:
hc = 10.0 ± 0.64[10−15], hc = 56.3 ± 2.42[10−15], and hc = 4.83 ± 0.50[10−15], with one-sided 2σ
upper-limits of: hc ≤ 10.98[10−15], hc ≤ 60.29[10−15], and hc ≤ 5.65[10−15].

1 Introduction

We describe our attempts to analyse the International Pulsar Timing Array (IPTA) first Mock Data

Challenge (MDC). Our analysis methods are implemented in the European Pulsar Timing Array (EPTA)

data analysis library, an open source universal pulsar timing data analysis library under construction

soon to be released to the public. This library is written in a combination of Python and C, and can

interface with the pulsar timing package Tempo2 (Hobbs et al., 2006).
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In Section 2 we briefly review the different Bayesian analysis techniques that we have employed. In

Section 3, we discuss the model and the setup of the analysis with the results presented in Section 4.

We conclude with some remarks in Section 5.

2 PTA data analysis

We use the Bayesian analysis method first outlined in van Haasteren et al. (2009), and further de-

veloped in van Haasteren & Levin (2010); van Haasteren et al. (2011); van Haasteren & Levin (2012,

hereafter vHL). A substantial reduction of the processing time is obtained by applying the ABC-method

of van Haasteren (2012) to the data. We briefly review the likelihood function we use in Section 2.1,

and we outline the ABC-method in Section 2.2.

2.1 Review of the likelihood

We consider k pulsars, with n′

a TOAs for the a-th pulsar, where the n′ =
∑k

a=1 n
′

a TOAs are described

as an addition of a deterministic and a stochastic part. In the observations this distinction is blurred

because we cannot fully separate the stochastic contributions from the deterministic contributions. In

practice we therefore work with timing residuals that are produced using first estimates β0i of the m
timing-model parameters βi (i between 1 and m); this initial guess is usually assumed to be accurate

enough to use a linear approximation of the timing-model (Edwards et al., 2006). Here m =
∑k

a=1 ma

is the sum of the number of timing-model parameters of all the individual pulsars. In this linear

approximation, the timing-residuals depend on ξi = βi − β0i as:

~δt
′

= ~δt
prf

+M~ξ, (1)

where ~δt
′

are the timing-residuals in the linear approximation to the timing-model, ~δt
prf

is the vector of

pre-fit timing-residuals, ~ξ is the vector with timing-model parameters for all k pulsars, and the (n′×m)
matrix M is the so-called design matrix (see e.g. §15.4 of Press et al., 1992, vHLML), which describes

how the timing-residuals depend on the model parameters. Take for example a simple timing model

which only contains quadratic spindown, the matrix M is a (n′ × 3) matrix, with the j-th column

describing a (j − 1)-th order polynomial. The elements of M are then: tj−1
i , with ti the i-th TOA.

In their search for a simplified representation of the analytic marginalisation procedure, vHL de-

composed the design matrix into an orthogonal basis based on the singular value decomposition

M = UΣV ∗, where U and V are (n′ × n′) and (m × m) orthogonal matrices, and Σ is an (n′ × m)
diagonal matrix. The first m columns of U span the column space of M , and the last n = n′ − m
columns of U span the complement. We denote these two subspace bases as F and G respectively:

U = (F G) . vHL showed that the likelihood can be rewritten as:

∫

dm~ξP (~δt
′

|~ξ, ~φ) =
exp

(

−1
2
~δt

′T
G
(

GTC ′G
)

−1
GT ~δt

′
)

√

(2π)n det (GTC ′G)
. (2)

2.2 The ABC-method

van Haasteren (2012) introduced a linear transformation called “the ABC-method” that reduces the

dimensionality of the dataset without losing a significant amount of information from a signal of

interest. The ABC-method is both a marginalisation over all timing model parameters and a lossy

linear data compression method.
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The transformation ~x = H~δt, with ~x the compressed data called the “generalised residuals”. The

likelihood of the generalised residuals is:

P (~x|~φ) =
exp

(

−1
2
~xT

(

HTCH
)

−1
~x
)

√

(2π)l det (Σw) det (HTCH)
. (3)

Although Equation (3) is valid for any H, we would like to choose H such that no information about

the GWB signal is lost. This is accomplished by taking H = Σ
−1/2
w W , with Σw a conservative estimate

of the noise (consisting of the TOA uncertainties), and the columns of the (n× l) matrix W consist of

the first l eigenvectors of the matrix Cw = Σ
−1/2
w SΣ

−1/2
w , with S the covariance matrix of the expected

signal.

The ABC-method can be accelerated further by using an interpolation scheme for the compressed

covariance matrix. We use the method outlined in van van Haasteren (2012), which combines linear

data compression with a cubic spline interpolation technique. We divided the interval 1.04 < γ < 6.99
in 118 sub-intervals, where on each interval the elements of the compressed covariance matrix are

approximated by cubic functions that are matched in value and derivative at the boundaries.

3 Setup of the analysis

The basis of our analysis is the likelihood function described by Equation (3). In this section we discuss

the approximations we have made in using this expression as our likelihood, and we discuss the model

we have used to analyse the closed sets.

3.1 Justification of the model

The following are approximations we have made in the derivation of the likelihood of Equation (3):

1. The timing model has been linearised, which is equivalent to using a Fisher-matrix approxima-

tion at the maximum likelihood value of the timing model parameters (Edwards et al., 2006).

2. The data has been compressed with the ABC-method, which by design throws away some infor-

mation.

3. The noise and GWB are assumed to be Gaussian processes.

With regard to item 1, Taylor et al. (2012) have found that the timing solutions of several pulsars

in open challenge 2 and closed challenge 2 had not yet converged. This invalidates the maximum

likelihood expansion, as some pulsars may have appeared to be noisier than they should have been.

Item 2 is an approximation which we have full control over, as we use the ABC-method with a fidelity

F ≥ 0.99 to not throw away too much information. Item 3 is justified by the central limit theorem.

3.2 Model for the data challenge sets

We have modelled all the closed sets of the IPTA Mock Data challenge the same way. In our likelihood,

we included:

• Post-fit timing residuals as reported by Tempo2 with “-residuals”
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• TOA uncertainties as reported by Tempo2. No variable constant multiplicative fudge factor

(“EFAC”) was included.

• A Fisher-matrix approximation to the timing model was used, as obtained through the Tempo2

plugin “-designmatrix”.

• A red timing noise contribution for each pulsar was assumed, with a power-law power spectral

density as described in vHLML. The low-frequency cut-off was taken to be 1/20yr−1; the likeli-

hood of the compressed data, Equation (3) is insensitive to this value. There are therefore only

two free parameters for such a noise source: the amplitude A, and the spectral index γ.

• An isotropic stochastic background of gravitational waves, correlated according to the Hellings

& Downs correlation curve (Hellings & Downs, 1983) was assumed, with a power-law spectral

density. As for the red timing noise, this signal had two free parameters in our model: the

amplitude and the spectral index.

• The priors were uniform for all the spectral index parameters. The spectral indices for both the

timing noise and the GWB were bound to the interval γ ∈ (1, 7).

• The priors were uniform in logA for all amplitude parameters (1/A when sampling in A), for

both the GWB and the timing noise. In units of the GWB, the amplitude parameters were all

assumed to lie in the range A ∈ (10−16, 10−12).

With this way of modelling we had 2× 36+2 = 74 free parameters in our model, plus over 200 timing

model parameters that we analytically marginalised over.

We have also used models in which the timing noise was the same for all pulsars. This reduces the

number of parameters to 2 + 2 = 4, which makes even MultiNest (Feroz et al., 2009) able to sample

the posterior with ease. However, we believe that such a model is unphysical, and we choose to list

the 74 parameter model as our final answers.

3.3 Choice of prior

Tests on the open challenge sets indicate that the prior for the red timing noise amplitude and the

GWB amplitude needs to be uniform on a logarithmic scale. A prior uniform in the noise amplitude

seems to strongly bias the results. Although it requires a more theoretical explanation, which we will

address in a future work, a straightforward explanation can be given in terms of Jeffreys prior. All

open and closed challenges have a negligible amount of timing noise in all pulsars, which makes the

problem of estimating the timing noise amplitude equivalent to estimating the variance in a zero-mean

Gaussian distributed time series. In such a problem, Jeffreys prior is uniform on a logarithmic scale.

For all challenges, using a uniform prior in the noise amplitude strongly biases the GWB amplitude to

about 75% of its true value, in the case the timing noise was modelled for each pulsar individually. In

the case the timing noise in all pulsars is modelled by one common parameter, this dependence on the

prior is not present.

3.4 The data compression setup

The data compression was set up as outlined in van Haasteren (2012). We used the TOA uncertainties,

as obtained from Tempo2, as estimates for the timing noise. The GWB signal estimate used in the

ABC compression was hc = 10−14, hc = 6 × 10−14, and hc = 10−14 for the three blind challenges,

respectively. These are rough estimates obtained through Equation (24) of van Haasteren & Levin
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(2012). In applying that equation, we left out J0437-4714 in closed dataset 2, as this pulsar seems to

contain a lot of high-frequency noise.

3.5 The different samplers

3.5.1 twalk

We initially used the twalk (Christen & Fox, 2010) to sample our 74-dimensional parameter space.

The twalk is a Markov Chain Monte Carlo (MCMC) sampler that has one convenient property: it does

not need to be tuned for most distributions. This is achieved by using four different types of steps,

one of which is the “stretch move” also used by the recently introduced and much-celebrated sampler

“emcee” (Foreman-Mackey et al., 2012). However, twalk is not efficient in many dimensions, since it

updates parameters with only a few dimensions at a time.

We ran the twalk for an initial burn-in of 5× 104 steps on all datasets. In this burn-in chain we judged

whether or not the chain had come to equilibrium by looking at the log-likelihood values of the chains.

We cut off the begin of the chain, and determined the rms variations of all parameters in the rest of

the chain.

3.5.2 Metropolis-Hastings

Metropolis-Hastings is quite an efficient sampler, provided that the proposal distributions are tuned

well for the problem. The acceptance fraction should approximate 25% (Roberts et al., 1997), and

mixing should be similar for all parameters. Since we have 74 dimensions, this is not trivial to get

right. We therefore chose to use the results of the twalk algorithm to tune the proposal distribution

for a subsequent Metropolis-Hasgings run. We used a Gaussian proposal distribution, centered around

the current sample, with a width equal to the parameter rms as determined from the twalk burn-in

chain. We found that we needed to multiply all proposal widths with a factor of about a ≈ 0.05 to

obtain an acceptance fraction of 25%.

We ran the Metropolis-Hastings algorithm for 2 × 105 steps. The autocorrelation of the chain was a

few 10s of samples in this chain, whereas for the twalk it was over 1000 samples.

3.5.3 Emcee

Goodman and Weare introduced an affine invariant sampler with several convenient properties: fast

mixing, only one tunable parameter, invariance to all affine (linear) transformations. This algorithm

has been implemented in the Python package “emcee” (Foreman-Mackey et al., 2012).

We found that for this particular problem emcee did not perform very well. Many proposed steps were

actually rejected because they fell outside of the prior range we set on the spectral indices. Using a

sigmoid transformation (arctangent) to remove the hard boundaries on parameter space, effectively

having emcee sampling on an unbounded parameter space, did not help: the acceptance fraction

remained around 5%. This low acceptance fraction prohibited the chain from mixing properly, and we

found a well-tuned Metropolis-Hastings algorithm to be more efficient.

3.5.4 MultiNest

MultiNest Feroz et al. (2009) is a Bayesian inference method, based on the ideas of nested sampling

(Skilling 2000). MultiNest uses a form of rejection sampling: it repeatedly draws samples from the
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prior distribution, under the restriction that the likelihood values are above a certain threshold that

increases during the run of the analysis.

We found MultiNest to be slow on these 74-dimensional parameter spaces. Even though the likelihood

appears to be uni-modal, most of the proposed samples ended up being rejected near the end of a run.

We have tried several different choices of live points: 200, 500, 1000, and 2000, all with similar results.

Efficiency was set to 0.99. The number of samples required to get reasonable credible regions (no

evidence convergence yet) was around 50M points. This is approximately 103 times more samples than

was required to have good looking credible regions with Metropolis-Hastings. However, MultiNest did

provide an independent check of convergence of our MCMC chains. For our four-dimensional searches

MultiNest performance was closer to the MCMC methods.

4 Analysis

4.1 The ABC-method results

The level of compression depends on the signal to noise ratio. We use the conservative approach

outlined in van Haasteren (2012): only use the TOA uncertainties and an (over)estimate of the signal

strength. The signal amplitudes we assumed for the three closed datasets were: hc = 10−14, hc =
6 × 10−14, hc = 10 × 10−14. This resulted in a number of generalised residuals that was different for

each pulsar in each dataset, because the timing model and the TOA uncertainty differs per pulsar. The

result is presented in Table 4.1.

Pulsar Closed 1 Closed 2 Closed 3

J0030+0451 10 11 6

J0218+4232 11 4 2

J0437-4715 10 41 19

J0613-0200 10 9 5

J0621+1002 10 3 2

J0711-6830 10 6 4

J0751+1807 11 8 5

J0900-3144 11 6 3

J1012+5307 10 11 6

J1022+1001 11 12 6

J1024-0719 10 13 6

J1045-4509 10 5 3

J1455-3330 10 6 3

J1600-3053 5 13 6

J1603-7202 10 7 5

J1640+2224 9 13 6

J1643-1224 9 8 5

J1713+0747 10 35 17

Pulsar Closed 1 Closed 2 Closed 3

J1730-2304 10 7 4

J1732-5049 10 6 3

J1738+0333 9 13 6

J1741+1351 12 17 8

J1744-1134 10 18 8

J1751-2857 11 7 4

J1853+1303 11 17 8

J1857+0943 10 12 6

J1909-3744 10 35 16

J1910+1256 11 17 8

J1918-0642 10 6 4

J1939+2134 10 51 25

J1955+2908 10 15 7

J2019+2425 10 7 5

J2124-3358 10 6 3

J2129-5721 10 6 4

J2145-0750 6 9 6

J2317+1439 10 13 6

Table 1: The number of generalised residuals per pulsar after compression for the closed datasets.
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Dataset hc (10−15) true hc γ true γ

Closed 1 10.31 ± 1.09 10 4.28 ± 0.20 4.33

Closed 2 57.03 ± 3.48 60 4.35 ± 0.09 4.33

Closed 3 6.91± 1.72 5.0 3.75 ± 0.40 4.33

Table 2: The inferred parameters of the GWB signal of the closed challenges.

4.2 Results

Our results for the GWB in the 74-dimensional searches are listed in Table 4.2. We have calculated the

errors as being the half-width of the 68% probability density region.

We note that the spectral index of closed 3 has a highly non-Gaussian shape. If we would list the 95%
boundaries instead of the 68% we would obtain: γ = 3.97 ± 0.89, which makes the true value of 4.33
well within our 95% confidence limit. We therefore conclude that there are no inconsistencies in our

results.

4.3 Posterior distributions

In Figure 1—5 we present the marginalised posterior distribution we found in our analysis.

4.4 Computational cost

The analysis of the results consisted of four phases: ABC-method compression, ABC-method interpo-

lation preparation, twalk burn-in, Metropolis-Hastings sampling. For all MDC datasets the computa-

tional cost was nearly equivalent, with the cost per analysis step:

• < 5 minutes for ABC-method compression

• < 10 minutes for ABC-method interpolation preparation

• < 10 minutes for the twalk burn-in

• < 15 minutes for the Metropolis-Hastings sampling

All in all this comes down to almost a full hour on a single machine for each dataset. All calculations

were done on a MacBook pro, with 2.70GHz CPU, all code linked with a standard LAPACK implemen-

tation (Ubuntu 12.04), linked against ATLAS. We did not optimise our code very aggressively: instead

of using Cholesky-solve, we calculated the inverse matrices at various points in the calculations, faster

(commercial) LAPACK implementations exist, and we did not multi-thread any algorithms.

5 Conclusions

Our Bayesian analysis has yielded results consistent with the injected values of the first IPTA Mock Data

Challenge. Our analysis indicates the presence of a stochastic background of gravitational waves in

all three data challenge sets, with amplitudes of: hc = 1.03 ± 0.11[×10−14 ], hc = 5.70 ± 0.35[×10−14],
and hc = 6.91 ± 1.72[×10−15 ]. We found for the spectral index for the gravitational wave signal:

γ = 4.28 ± 0.20, γ = 4.35 ± 0.09, and γ = 3.75 ± 0.40, with a strong covariance not reflected in these

numbers between the signal and the red noise for closed challenge three. If we constrain the GWB

spectral index to the usual choice of γ = 13/3, we obtain the estimates: hc = 10.0 ± 0.64[10−15], hc =
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56.3 ± 2.42[10−15], and hc = 4.83 ± 0.50[10−15], with one-sided 2σ upper-limits of: hc ≤ 10.98[10−15],
hc ≤ 60.29[10−15 ], and hc ≤ 5.65[10−15].

Tests on the open challenges have indicated that the prior for the noise and GWB amplitudes needs to

be uniform on a logarithmic scale. Future work will include more tests of convergence of the MCMC

chain, internal consistency checks.
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Figure 1: Closed challenge 1, marginalised posterior distributions for a model with 36 × 2 + 2 = 74
free parameters. If we run an MCMC with γGWB = 13/3 fixed, then we get hc = 10.0 ± 0.64[10−15],
with a one-sided 2σ upper-limit of hc ≤ 10.98[10−15 ]

2 4 6 8 10 12 14 16
Amplitude [10−15]

1

2

3

4

5

6

7

S
p
ec
tr
al

in
d
ex

γ
[]

GWB, closed 1

0 2 4 6 8 10 12 14 16
Amplitude [10−15]

0
1
2
3
4
5
6
7
8
9

M
ar
gi
n
al
is
ed

p
os
te
ri
or

GWB, closed 1

1 2 3 4 5 6 7
Spectral index γ []

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
ar
gi
n
al
is
ed

p
os
te
ri
or

GWB, closed 1

Figure 2: Closed challenge 1, marginalised posterior distributions for a model with 4 free parameters,

where all the pulsars are assumed to have an equal red noise contribution.
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Figure 3: Closed challenge 2, marginalised posterior distributions for a model with 36 × 2 + 2 = 74
free parameters. If we run an MCMC with γGWB = 13/3 fixed, then we get hc = 56.3 ± 2.42[10−15],
with a one-sided 2σ upper-limit of hc ≤ 60.29[10−15 ]
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Figure 4: Closed challenge 3, marginalised posterior distributions for a model with 36 × 2 + 2 = 74
free parameters. If we run an MCMC with γGWB = 13/3 fixed, then we get hc = 4.83 ± 0.50[10−15],
with a one-sided 2σ upper-limit of hc ≤ 5.65[10−15 ]
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Figure 5: Closed challenge 3, marginalised posterior distributions for a model with 4 free parameters,

where all the pulsars are assumed to have an equal red noise contribution.
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