179 research outputs found

    Prevalence and factors associated with poor performance in the 5‐chair stand test: findings from the Cognitive Function and Ageing Study II and proposed Newcastle protocol for use in the assessment of sarcopenia

    Get PDF
    Background Poor performance in the 5‐chair stand test (5‐CST) indicates reduced lower limb muscle strength. The 5‐CST has been recommended for use in the initial assessment of sarcopenia, the accelerated loss of muscle strength and mass. In order to facilitate the use of the 5‐CST in sarcopenia assessment, our aims were to (i) describe the prevalence and factors associated with poor performance in the 5‐CST, (ii) examine the relationship between the 5‐CST and gait speed, and (iii) propose a protocol for using the 5‐CST. Methods The population‐based study Cognitive Function and Ageing Study II recruited people aged 65 years and over from defined geographical localities in Cambridgeshire, Newcastle, and Nottingham. The study collected data for assessment of functional ability during home visits, including the 5‐CST and gait speed. We used multinomial logistic regression to assess the associations between factors including the SARC‐F questionnaire and the category of 5‐CST performance: fast (15 s), or unable, with slow/unable classed as poor performance. We reviewed previous studies on the protocol used to carry out the 5‐CST. Results A total of 7190 participants aged 65+ from the three diverse localities of Cognitive Function and Ageing Study II were included (54.1% female). The proportion of those with poor performance in the 5‐CST increased with age, from 34.3% at age 65–69 to 89.7% at age 90+. Factors independently associated with poor performance included positive responses to the SARC‐F questionnaire, physical inactivity, depression, impaired cognition, and multimorbidity (all P < 0.005). Most people with poor performance also had slow gait speed (57.8%) or were unable to complete the gait speed test (18.4%). We found variation in the 5‐CST protocol used, for example, timing until a participant stood up for the fifth time or until they sat down afterwards. Conclusions Poor performance in the 5‐CST is increasingly common with age and is associated with a cluster of other factors that characterize risk for poor ageing such as physical inactivity, impaired cognition, and multimorbidity. We recommend a low threshold for performing the 5‐CST in clinical settings and provide a protocol for its use

    Evolution of hindlimb muscle anatomy across the tetrapod water-to-land transition, including comparisons with forelimb anatomy

    Get PDF
    Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins‐to‐limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a “similarity bottleneck” at the fins‐to‐limbs transition. Here we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins‐to‐limbs and water‐to‐land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin‐like to limb‐like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle‐muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown‐group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group

    Steroid-refractory ulcerative colitis treated with corticosteroids, metronidazole and vancomycin: a case report

    Get PDF
    BACKGROUND: Increasing evidence elucidating the pathogenic mechanisms of ulcerative colitis (UC) has accumulated and the disease is widely assumed to be the consequence of genetic susceptibility and an abnormal immune response to commensal bacteria. However evidence regarding an infectious etiology in UC remains elusive. CASE PRESENTATION: We report a provocative case of UC with profound rheumatologic involvement directly preceded by Clostridium difficile infection and accompanying fever, vomiting, bloody diarrhea, and arthritis. Colonic biopsy revealed a histopathology suggestive of UC. Antibiotic treatment eliminated detectable levels of enteric pathogens but did not abate symptoms. Resolution of symptoms was procurable with oral prednisone, but tapering of corticosteroids was only achievable in combination therapy with vancomycin and metronidazole. CONCLUSIONS: An infectious pathogen may have both precipitated and exacerbated autoimmune disease attributes in UC, symptoms of which could be resolved only with a combination of corticosteroids, vancomycin and metronidazole. This may warrant the need for more perceptive scrutiny of C. difficile and the like in patients with UC

    Phenotypic variation and fitness in a metapopulation of tubeworms (Ridgeia piscesae Jones) at hydrothermal vents

    Get PDF
    We examine the nature of variation in a hot vent tubeworm, Ridgeia piscesae, to determine how phenotypes are maintained and how reproductive potential is dictated by habitat. This foundation species at northeast Pacific hydrothermal sites occupies a wide habitat range in a highly heterogeneous environment. Where fluids supply high levels of dissolved sulphide for symbionts, the worm grows rapidly in a ‘‘short-fat’’ phenotype characterized by lush gill plumes; when plumes are healthy, sperm package capture is higher. This form can mature within months and has a high fecundity with continuous gamete output and a lifespan of about three years in unstable conditions. Other phenotypes occupy low fluid flux habitats that are more stable and individuals grow very slowly; however, they have low reproductive readiness that is hampered further by small, predator cropped branchiae, thus reducing fertilization and metabolite uptake. Although only the largest worms were measured, only 17% of low flux worms were reproductively competent compared to 91% of high flux worms. A model of reproductive readiness illustrates that tube diameter is a good predictor of reproductive output and that few low flux worms reached critical reproductive size. We postulate that most of the propagules for the vent fields originate from the larger tubeworms that live in small, unstable habitat patches. The large expanses of worms in more stable low flux habitat sustain a small, but long-term, reproductive output. Phenotypic variation is an adaptation that fosters both morphological and physiological responses to differences in chemical milieu and predator pressure. This foundation species forms a metapopulation with variable growth characteristics in a heterogeneous environment where a strategy of phenotypic variation bestows an advantage over specialization

    Self-Medication as Adaptive Plasticity: Increased Ingestion of Plant Toxins by Parasitized Caterpillars

    Get PDF
    Self-medication is a specific therapeutic behavioral change in response to disease or parasitism. The empirical literature on self-medication has so far focused entirely on identifying cases of self-medication in which particular behaviors are linked to therapeutic outcomes. In this study, we frame self-medication in the broader realm of adaptive plasticity, which provides several testable predictions for verifying self-medication and advancing its conceptual significance. First, self-medication behavior should improve the fitness of animals infected by parasites or pathogens. Second, self-medication behavior in the absence of infection should decrease fitness. Third, infection should induce self-medication behavior. The few rigorous studies of self-medication in non-human animals have not used this theoretical framework and thus have not tested fitness costs of self-medication in the absence of disease or parasitism. Here we use manipulative experiments to test these predictions with the foraging behavior of woolly bear caterpillars (Grammia incorrupta; Lepidoptera: Arctiidae) in response to their lethal endoparasites (tachinid flies). Our experiments show that the ingestion of plant toxins called pyrrolizidine alkaloids improves the survival of parasitized caterpillars by conferring resistance against tachinid flies. Consistent with theoretical prediction, excessive ingestion of these toxins reduces the survival of unparasitized caterpillars. Parasitized caterpillars are more likely than unparasitized caterpillars to specifically ingest large amounts of pyrrolizidine alkaloids. This case challenges the conventional view that self-medication behavior is restricted to animals with advanced cognitive abilities, such as primates, and empowers the science of self-medication by placing it in the domain of adaptive plasticity theory

    Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG) storage using quantitative complementation procedures in <it>Drosophila melanogaster</it>. Based on our results from <it>Drosophila</it>, we performed a human population-based association study to investigate the effect of natural variation in <it>LAMA5 </it>gene on body composition in humans.</p> <p>Results</p> <p>We identified four candidate genes that contributed to differences in TAG storage between two strains of <it>D. melanogaster</it>, including <it>Laminin A </it>(<it>LanA</it>), which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable <it>LanA </it>mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. <it>Drosophila LanA </it>is closely related to human <it>LAMA5 </it>gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs) in the human <it>LAMA5 </it>gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA) and African American (AA) descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: <it>P </it>= 0.008; AA: <it>P </it>= 0.05) and lean mass (EA: <it>P= </it>0.003; AA: <it>P </it>= 0.03). We also found this SNP to be associated with height (<it>P </it>= 0.01), total fat mass (<it>P </it>= 0.01), and HDL-cholesterol (<it>P </it>= 0.003) but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (<it>P </it>= 0.02) and HDL-cholesterol (<it>P </it>= 0.03) were observed in AA women.</p> <p>Conclusion</p> <p>Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.</p

    Swimming with Predators and Pesticides: How Environmental Stressors Affect the Thermal Physiology of Tadpoles

    Get PDF
    To forecast biological responses to changing environments, we need to understand how a species’s physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4uC higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5uC, while exposure to the herbicide marginally lowered Topt by 0.4uC. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5uC higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.Peer reviewe

    Understanding hereditary diseases using the dog and human as companion model systems

    Get PDF
    Animal models are requisite for genetic dissection of, and improved treatment regimens for, human hereditary diseases. While several animals have been used in academic and industrial research, the primary model for dissection of hereditary diseases has been the many strains of the laboratory mouse. However, given its greater (than the mouse) genetic similarity to the human, high number of naturally occurring hereditary diseases, unique population structure, and the availability of the complete genome sequence, the purebred dog has emerged as a powerful model for study of diseases. The major advantage the dog provides is that it is afflicted with approximately 450 hereditary diseases, about half of which have remarkable clinical similarities to corresponding diseases of the human. In addition, humankind has a strong desire to cure diseases of the dog so these two facts make the dog an ideal clinical and genetic model. This review highlights several of these shared hereditary diseases. Specifically, the canine models discussed herein have played important roles in identification of causative genes and/or have been utilized in novel therapeutic approaches of interest to the dog and human

    Endogenous laminin is required for human airway smooth muscle cell maturation

    Get PDF
    BACKGROUND: Airway smooth muscle (ASM) contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM) components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. METHODS: Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. RESULTS: Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP) significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. CONCLUSION: While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the first time that endogenously expressed laminin is required for ASM maturation to the contractile phenotype. As endogenously expressed laminin chains α2, β1 and γ1 are uniquely increased during myocyte maturation, these laminin chains may be key in this process. Thus, human ASM maturation appears to involve regulated endogenous expression of a select set of laminin chains that are essential for accumulation of contractile phenotype myocytes
    corecore