456 research outputs found
A Ball in a Groove
We study the static equilibrium of an elastic sphere held in a rigid groove
by gravity and frictional contacts, as determined by contact mechanics. As a
function of the opening angle of the groove and the tilt of the groove with
respect to the vertical, we identify two regimes of static equilibrium for the
ball. In the first of these, at large opening angle or low tilt, the ball rolls
at both contacts as it is loaded. This is an analog of the "elastic" regime in
the mechanics of granular media. At smaller opening angles or larger tilts, the
ball rolls at one contact and slides at the other as it is loaded, analogously
with the "plastic" regime in the mechanics of granular media. In the elastic
regime, the stress indeterminacy is resolved by the underlying kinetics of the
ball response to loading.Comment: RevTeX 3.0, 4 pages, 2 eps figures included with eps
Quantum statistical effects in nano-oscillator arrays
We have theoretically predicted the density of states(DOS), the low
temperature specific heat, and Brillouin scattering spectra of a large, free
standing array of coupled nano-oscillators. We have found significant gaps in
the DOS of 2D elastic systems, and predict the average DOS to be nearly
independent of frequency over a broad band f < 50GHz. At low temperatures, the
measurements probe the quantum statistics obeyed by rigid body modes of the
array and, thus, could be used to verify the quantization of the associated
energy levels. These states, in turn, involve center-of mass motion of large
numbers of atoms, N > 1.e14, and therefore such observations would extend the
domain in which quantum mechanics has been experimentally tested. We have found
the required measurement capability to carry out this investigation to be
within reach of current technology.Comment: 1 tex file, 3 figures, 1 bbl fil
Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks
This is the first paper of a series of three, reporting on numerical
simulation studies of geometric and mechanical properties of static assemblies
of spherical beads under an isotropic pressure. Frictionless systems assemble
in the unique random close packing (RCP) state in the low pressure limit if the
compression process is fast enough, slower processes inducing traces of
crystallization, and exhibit specific properties directly related to
isostaticity of the force-carrying structure. The different structures of
frictional packings assembled by various methods cannot be classified by the
sole density. While lubricated systems approach RCP densities and coordination
number z^*~=6 on the backbone in the rigid limit, an idealized "vibration"
procedure results in equally dense configurations with z^*~=4.5. Near neighbor
correlations on various scales are computed and compared to available
laboratory data, although z^* values remain experimentally inaccessible. Low
coordination packings have many rattlers (more than 10% of the grains carry no
force), which should be accounted for on studying position correlations, and a
small proportion of harmless "floppy modes" associated with divalent grains.
Frictional packings, however slowly assembled under low pressure, retain a
finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Elastic interactions of active cells with soft materials
Anchorage-dependent cells collect information on the mechanical properties of
the environment through their contractile machineries and use this information
to position and orient themselves. Since the probing process is anisotropic,
cellular force patterns during active mechanosensing can be modelled as
anisotropic force contraction dipoles. Their build-up depends on the mechanical
properties of the environment, including elastic rigidity and prestrain. In a
finite sized sample, it also depends on sample geometry and boundary conditions
through image strain fields. We discuss the interactions of active cells with
an elastic environment and compare it to the case of physical force dipoles.
Despite marked differences, both cases can be described in the same theoretical
framework. We exactly solve the elastic equations for anisotropic force
contraction dipoles in different geometries (full space, halfspace and sphere)
and with different boundary conditions. These results are then used to predict
optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version,
accepted for publication in Phys. Rev.
An excitable electronic circuit as a sensory neuron model
An electronic circuit device, inspired on the FitzHugh-Nagumo model of
neuronal excitability, was constructed and shown to operate with
characteristics compatible with those of biological sensory neurons. The
nonlinear dynamical model of the electronics quantitatively reproduces the
experimental observations on the circuit, including the Hopf bifurcation at the
onset of tonic spiking. Moreover, we have implemented an analog noise generator
as a source to study the variability of the spike trains. When the circuit is
in the excitable regime, coherence resonance is observed. At sufficiently low
noise intensity the spike trains have Poisson statistics, as in many biological
neurons. The transfer function of the stochastic spike trains has a dynamic
range of 6 dB, close to experimental values for real olfactory receptor
neurons.Comment: 10 pages, 6 figure
Engineering Design with Digital Thread
Digital Thread offers the opportunity to use information generated across the product lifecycle to design the next generation of products. In this paper, we introduce a mathematical methodology that establishes the data-driven design and decision problem associated with Digital Thread. Our objectives are twofold: 1) Provide a mathematical definition of Digital Thread in the context of conceptual and preliminary design and establish a methodology for how information along the Digital Thread enters into the design problem as well how design decisions affect the Digital Thread. 2) Develop a data-driven design method that incorporates data from different sources from across the product life cycle. We illustrate aspects of our methodology through an example design of a structural fiber-steered composite component.United States. Air Force. Office of Scientific Research (Grant FA9550-16-1-0108)SUTD-MIT International Design Centre (IDC
Transformation cloaking and radial approximations for flexural waves in elastic plates
It is known that design of elastic cloaks is much more challenging than that of acoustic cloaks, cloaks of electromagnetic waves or scalar problems of antiplane shear. In this paper, we address fully the fourth-order problem and develop a model of a broadband invisibility cloak for channelling flexural waves in thin plates around finite inclusions. We also discuss an option to employ efficiently an elastic pre-stress and body forces to achieve such a result. An asymptotic derivation provides a rigorous link between the model in question and elastic wave propagation in thin solids. This is discussed in detail to show connection with non-symmetric formulations in vector elasticity studied in earlier work
- …