42 research outputs found

    Increased Risk of Dementia in Patients with Atopic Dermatitis: A Nationwide Population-Based Cohort Study

    Get PDF
    Atopic dermatitis (AD) is a chronic inflammatory skin disorder with bimodal incidence peaks in early childhood and middle-aged and older adults. Few studies have focused on the risk of dementia in AD. The aims of this study were to analyse the incidence, and risk factors for dementia in patients with AD. This nationwide population-based retrospective cohort study enrolled 38,391 adults ≥ 40 years of age with AD and 2,643,602 controls without AD from the Korean National Health Insurance System (NHIS) database from 2009 to 2016. The cumulative incidence probability of all-cause dementia, Alzheimer\u27s disease, or vascular dementia at 8 years was 50, 39, and 7 per 1,000 person-years in patients with AD, respectively. The adjusted risks of all-cause dementia (hazard ratio (HR), 1.072; 95% confidence interval (95% CI) 1.026-1.120), and Alzheimer\u27s disease (HR 1.051; 95% CI 1.000-1.104) were increased in patients with AD. The effect of AD on the development of all-cause dementia and Alzheimer\u27s dementia varied according to age and diabetes mellitus (all p for interaction, \u3c 0.05). The risks of all-cause dementia and Alzheimer\u27s disease were increased in patients with AD. Management of modifiable risk factors is important for preventing dementia in patients with AD

    Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea

    Get PDF
    Metformin is a widely used drug for treatment of diabetes mellitus, due to its safety and efficacy. In addition to its role as an antidiabetic drug, numerous beneficial effects of metformin have enabled its use in various diseases. Considering the anti-androgenic, anti-angiogenic, anti-fibrotic and antioxidant properties of metformin, it may have the potential to improve chronic inflammatory skin diseases. However, further evidence is needed to confirm the efficacy of metformin in dermatological conditions, This review focuses on exploring the therapeutic targets of metformin in acne vulgaris, hidradenitis suppurativa and rosacea, by studying their pathogeneses

    Atopic Dermatitis and the Risk of Myocardial Infarction and All-Cause Mortality: A Nationwide Population-Based Cohort Study

    Get PDF
    PURPOSE: Atopic dermatitis (AD) is a chronic inflammatory skin disorder associated with various comorbidities. However, inconsistent results on the risk of myocardial infarction (MI) and mortality have been reported in patients with AD. This study was aimed to evaluate the risk of MI and all-cause mortality in patients with AD. METHODS: This nationwide population-based retrospective cohort study enrolled 56,205 adults ≥ 20 years of age with AD and 3,825,609 controls without AD from the Korean National Health Service (NHIS) database from 2009 to 2016. RESULTS: The risk of MI (adjusted hazard ratio [aHR], 1.111, 95% confidence interval [CI], 1.050-1.176) was increased in patients with AD. By AD severity, patients with moderate-to-severe AD had a higher risk of MI (aHR, 1.163, 95% CI, 1.080-1.251) than individuals without AD. The risk of all-cause mortality was only increased for patients with moderate-to-severe AD (aHR, 1.096, 95% CI, 1.040-1.155) compared to individuals without AD. In subgroup analysis, an increased risk of MI was observed in female, non-obese, non-smoking, non-diabetic, and non-dyslipidemic patients with moderate-to-severe AD compared to individuals without AD. An increased risk of all-cause mortality was observed in patients with moderate-to-severe AD compared to non-AD controls among individuals ≥60 years of age and non-smokers. CONCLUSIONS: The risk of MI and all-cause death was increased in patients with moderate-to-severe AD. Even without well-known risk factors for MI and mortality, patients with AD require the proper management and screening for comorbidities to prevent MI and decrease all-cause mortality

    Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells

    Get PDF
    Biocompatible silica-overcoated magnetic nanoparticles containing an organic fluorescence dye, rhodamine B isothiocyanate (RITC), within a silica shell [50 nm size, MNP@SiO2(RITC)s] were synthesized. For future application of the MNP@SiO2(RITC)s into diverse areas of research such as drug or gene delivery, bioimaging, and biosensors, detailed information of the cellular uptake process of the nanoparticles is essential. Thus, this study was performed to elucidate the precise mechanism by which the lung cancer cells uptake the magnetic nanoparticles. Lung cells were chosen for this study because inhalation is the most likely route of exposure and lung cancer cells were also found to uptake magnetic nanoparticles rapidly in preliminary experiments. The lung cells were pretreated with different metabolic inhibitors. Our results revealed that low temperature disturbed the uptake of magnetic nanoparticles into the cells. Metabolic inhibitors also prevented the delivery of the materials into cells. Use of TEM clearly demonstrated that uptake of the nanoparticles was mediated through endosomes. Taken together, our results demonstrate that magnetic nanoparticles can be internalized into the cells through an energy-dependent endosomal-lysosomal mechanism

    Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells

    Get PDF
    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to have anti-tumor activity in various malignant neoplasms. However, the precise mechanism by which TET inhibits tumor cell growth remains to be elucidated. The present studies were performed to characterize the potential effects of TET on phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase (ERK) pathways since these signaling pathways are known to be responsible for cell growth and survival. TET suppressed cell proliferation and induced apoptosis in A549 human lung carcinoma cells. TET treatment resulted in a down-regulation of Akt and ERK phosphorylation in both time-/concentration-dependent manners. The inhibition of ERK using PD98059 synergistically enhanced the TET-induced apoptosis of A549 cells whereas the inhibition of Akt using LY294002 had a less significant effect. Taken together, our results suggest that TET: i) selectively inhibits the proliferation of lung cancer cells by blocking Akt activation and ii) increases apoptosis by inhibiting ERK. The treatment of lung cancers with TET may enhance the efficacy of chemotherapy and radiotherapy and increase the apoptotic potential of lung cancer cells

    Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium

    Get PDF
    Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia

    Amperometric microsensors monitoring glutamate-evoked in situ responses of nitric oxide and carbon monoxide from live human neuroblastoma cells

    Get PDF
    In the brain, nitric oxide (NO) and carbon monoxide (CO) are important signaling gases which have multifaceted roles, such as neurotransmitters, neuromodulators, and vasodilators. Even though it is difficult to measure NO and CO in a living system due to their high diffusibility and extremely low release levels, electrochemical sensors are promising tools to measure in vivo and in vitro NO and CO gases. In this paper, using amperometric dual and septuple NO/CO microsensors, real-time NO and CO changes evoked by glutamate were monitored simultaneously for human neuroblastoma (SH-SY5Y) cells. In cultures, the cells were differentiated and matured into functional neurons by retinoic acid and brain-derived neurotrophic factor. When glutamate was administrated to the cells, both NO and CO increases and subsequent decreases returning to the basal levels were observed with a dual NO/CO microsensor. In order to facilitate sensor’s measurement, a flower-type septuple NO/CO microsensor was newly developed and confirmed in terms of the sensitivity and selectivity. The septuple microsensor was employed for the measurements of NO and CO changes as a function of distances from the position of glutamate injection. Our sensor measurements revealed that only functionally differentiated cells responded to glutamate and released NO and CO. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Amperometric Microsensors Monitoring Glutamate-Evoked In Situ Responses of Nitric Oxide and Carbon Monoxide from Live Human Neuroblastoma Cells

    No full text
    In the brain, nitric oxide (NO) and carbon monoxide (CO) are important signaling gases which have multifaceted roles, such as neurotransmitters, neuromodulators, and vasodilators. Even though it is difficult to measure NO and CO in a living system due to their high diffusibility and extremely low release levels, electrochemical sensors are promising tools to measure in vivo and in vitro NO and CO gases. In this paper, using amperometric dual and septuple NO/CO microsensors, real-time NO and CO changes evoked by glutamate were monitored simultaneously for human neuroblastoma (SH-SY5Y) cells. In cultures, the cells were differentiated and matured into functional neurons by retinoic acid and brain-derived neurotrophic factor. When glutamate was administrated to the cells, both NO and CO increases and subsequent decreases returning to the basal levels were observed with a dual NO/CO microsensor. In order to facilitate sensor’s measurement, a flower-type septuple NO/CO microsensor was newly developed and confirmed in terms of the sensitivity and selectivity. The septuple microsensor was employed for the measurements of NO and CO changes as a function of distances from the position of glutamate injection. Our sensor measurements revealed that only functionally differentiated cells responded to glutamate and released NO and CO

    Precision 3D surface measurement of step-structures using mode-locked femtosecond pulses

    No full text
    Fast, precise 3-D measurement of step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor, flat panel display and photovoltaic products. Optical interferometers have long been used, but not that wide-spread for step-structures due to their phase ambiguity or low spatial coherence. Femtosecond pulse lasers can provide novel possibilities to optical profilometry both in the time and the frequency domain. In the time domain, step-surfaces can be measured over wide area by exploiting low temporal but high spatial coherence of femtosecond pulses; in the frequency domain, multi-wavelength interferometry permits the absolute measurement over the discontinued surface profiles while maintaining the sub-wavelength measurement precision.Published versio
    corecore