546 research outputs found

    Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Get PDF
    BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF) gene in an Epstein-Barr virus (EBV)-based plasmid (pEBVHGF) showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF).ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures

    A case study on swell correction of Chirp sub-bottom profiler (SBP) data using multi-beam echo sounder (MBES) data

    Get PDF
    High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector continuity; however, they are less useful for enhancing travel time consistency at intersection points of crossing lines. To develop a robust swell-removal technique for a set of crossing lines multi-beam echo sounder (MBES) data and Chirp sub-bottom profiler (SBP) data were acquired. After generation of a time structure map of the sea-bottom converted from the final processed multi-beam data, a moving average was used to improve the event continuity of the sea-bottom reflection of the Chirp SBP data. Using the position of the Chirp SBP data, the difference between the travel time of the sea-bottom from the smoothed map and the original travel time of the sea-bottom is calculated as a static correction. The static correction method based on the MBES data was compared and verified using three different cases: (i) simple 2D swell effect correction on a line-by-line basis, (ii) comparing the swell corrections at the crossing positions of 2D lines acquired from different dates, and (iii) comparison of ties of intersection points between 2D lines after new swell correction applied. Although a simple 2D swell correction showed great enhancement of reflector continuity, only the full static correction using the newly proposed method using MBES data produced completely corrected reflection events especially at the crossing points of 2D lines

    Beneficial Effects of Highly Palatable Food on the Behavioral and Neural Adversities induced by Early Life Stress Experience in Female Rats

    Get PDF
    This study examined the effects of highly palatable food during adolescence on the psycho-emotional and neural disturbances caused by early life stress experience in female rats. Female Sprague-Dawley pups were separated from dam for 3 h daily during the first two weeks of birth (MS) or left undisturbed (NH). Half of MS females received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28. Pups were subjected to the behavioral tests during young adulthood. The plasma corticosterone response to acute stress, Ī”FosB and brain-derived neurotrophic factor (BDNF) levels in the brain regions were analyzed. Total caloric intake and body weight gain during the whole experimental period did not differ among the experimental groups. Cookie access during adolescence and youth improved anxiety-/depression-like behaviors by MS experience. Ī”FosB expression was decreased, but BDNF was increased in the nucleus accumbens of MS females, and Ī”FosB expression was normalized and BDNF was further increased following cookie access. Corticosterone response to acute stress was blunted by MS experience and cookie access did not improve it. Results suggest that cookie access during adolescence improves the psycho-emotional disturbances of MS females, and Ī”FosB and/or BDNF expression in the nucleus accumbens may play a role in its underlying neural mechanisms. Ā© 2015 Ivyspring International Publisher.1

    Enhanced Solubility of the Support in an FDM-Based 3D Printed Structure Using Hydrogen Peroxide under Ultrasonication

    Get PDF
    Fused deposition modeling (FDM), one of the archetypal 3D printing processes, typically requires support structures matched to printed model parts that principally have undercut or overhung features. Thus, the support removal is an essential postprocessing step after the FDM process. Here, we present an efficient and rapid method to remove the support part of an FDM-manufactured product using the phenomenon of oxidative degradation of hydrogen peroxide. This mechanism was significantly effective on polyvinyl alcohol (PVA), which has been widely used as a support material in the FDM process. Compared to water, hydrogen peroxide provided a two times faster dissolution rate of the PVA material. This could be increased another two times by applying ultrasonication to the solvent. In addition to the rapidness, we confirmed that amount of the support residues removed was enhanced, which was essentially caused by the surface roughness of the FDM-fabricated part. Furthermore, we demonstrated that there was no deterioration with respect to the mechanical properties or shape geometries of the obtained 3D printed parts. Taken together, these results are expected to help enhance the productivity of FDM by reducing the postprocessing time and to allow the removal of complicated and fine support structures, thereby improving the design capability of the FDM technique

    In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse

    Get PDF
    Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-Ī². The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-Ī· is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis

    A Synonymous Genetic Alteration of LMX1B in a Family with Nail-Patella Syndrome

    Get PDF
    The gene responsible for nail-patella syndrome, LMX1B, has recently been identified on chromosome 9q. Here we present a patient with nail-patella syndrome and an autosomal dominant pattern of inheritance. A 17-year-old girl visited our clinic for the evaluation and treatment of proteinuria. She had dystrophic nails, palpable iliac horns, and hypoplastic patellae. Electron microscopy of a renal biopsy showed irregular thickening of the glomerular basement membrane. A family history over three generations revealed five affected family members. Genetic analysis found a change of TCG to TCC, resulting in a synonymous alteration at codon 219 in exon 4 of the LMX1B gene in two affected family members. The same alteration was not detected in an unaffected family member. This is the first report of familial nail-patella syndrome associated with an LMX1B in Korea mutation, However, we can not completely rule out the possibility that the G-to-C change may be a single nucleotide polymorphism as this genetic mutation cause no alteration in amino acid sequence of LMX1B

    Association between Dopamine D4 Receptor Gene Polymorphism and Scores on a Continuous Performance Test in Korean Children with Attention Deficit Hyperactivity Disorder

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the association between a variable number of tandem repeats polymorphism at the dopamine D4 receptor gene (DRD4) and the performance of children with attention deficit hyperactivity disorder (ADHD) in a continuous performance test (CPT). METHODS: This study included 72 ADHD children (mean age=9.39+/-2.05 years) who were recruited from one child psychiatric clinic. The omission errors, commission errors, reaction time and reaction standardization in the CPT were computed. The number of 48-base pairs tandem repeats in the exon III of DRD4 was analyzed in a blind manner. RESULTS: The homozygosity of the 4-repeat allele at DRD4 was significantly associated with fewer commission errors (t=2.364, df=28.685, p=0.025) and standard deviation of reaction time (t=2.351, df=24.648, p=0.027) even after adjusting for age. The results of analyses of CPT measured values among three groups showed that the group with higher frequency of the 4-repeat allele showed a lower mean score of commission errors (F=4.268, df=2, p=0.018). CONCLUSION: These results suggest a protective role of 4-repeat allele of the DRD4 polymorphisms on commission errors in the CPT in children with ADHDope

    Insulin-inducible SMILE inhibits hepatic gluconeogenesis

    Get PDF
    The role of a glucagon/cAMP-dependent protein kinaseā€“inducible coactivator PGC-1Ī± signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partnerā€“interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB Ī²-deficient (PKBĪ²āˆ’/āˆ’) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4ā€“mediated transcriptional activity via direct competition with PGC-1Ī±. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes
    • ā€¦
    corecore