12,483 research outputs found
Recommended from our members
Sedentary Behaviour and Life Expectancy in the USA: A Cause-Deleted Life Table Analysis
Objectives: To determine the impact of sitting and television viewing on life expectancy in the USA. Design: Prevalence-based cause-deleted life table analysis. Setting: Summary RRs of all-cause mortality associated with sitting and television viewing were obtained from a meta-analysis of available prospective cohort studies. Prevalences of sitting and television viewing were obtained from the US National Health and Nutrition Examination Survey. Primary outcome measure: Life expectancy at birth. Results: The estimated gains in life expectancy in the US population were 2.00 years for reducing excessive sitting to <3 h/day and a gain of 1.38 years from reducing excessive television viewing to <2 h/day. The lower and upper limits from a sensitivity analysis that involved simultaneously varying the estimates of RR (using the upper and lower bounds of the 95% CI) and the prevalence of television viewing (±20%) were 1.39 and 2.69 years for sitting and 0.48 and 2.51 years for television viewing, respectively. Conclusion: Reducing sedentary behaviours such as sitting and television viewing may have the potential to increase life expectancy in the USA
Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve
Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of
dust grains, which can trail the planet in a comet-like tail. When such objects
occult their host star, the resulting transit signal contains information about
the dust in the tail. We aim to use the detailed shape of the Kepler light
curve of KIC 12557548b to constrain the size and composition of the dust grains
that make up the tail, as well as the mass loss rate of the planet. Using a
self-consistent numerical model of the dust dynamics and sublimation, we
calculate the shape of the tail by following dust grains from their ejection
from the planet to their destruction due to sublimation. From this dust cloud
shape, we generate synthetic light curves (incorporating the effects of
extinction and angle-dependent scattering), which are then compared with the
phase-folded Kepler light curve. We explore the free-parameter space thoroughly
using a Markov chain Monte Carlo method. Our physics-based model is capable of
reproducing the observed light curve in detail. Good fits are found for initial
grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6
M_earth/Gyr (2-sigma ranges). We find that only certain combinations of
material parameters yield the correct tail length. These constraints are
consistent with dust made of corundum (Al2O3), but do not agree with a range of
carbonaceous, silicate, or iron compositions. Using a detailed, physically
motivated model, it is possible to constrain the composition of the dust in the
tails of evaporating rocky exoplanets. This provides a unique opportunity to
probe to interior composition of the smallest known exoplanets.Comment: 18 pages, 11 figures, A&A accepte
Trajectories of objectively measured physical activity in free-living older men.
BACKGROUND: The steep decline in physical activity (PA) among the oldest old is not well understood; there is little information about the patterns of change in PA and sedentary behaviour (SB) in older people. Longitudinal data on objectively measured PA data can give insights about how PA and SB change with age.
METHODS: Men age 70-90 yr, from a United Kingdom population-based cohort wore a GT3X accelerometer over the hip annually on up to three occasions (56%, 50%, and 51% response rates) spanning 2 yr. Multilevel models were used to estimate change in activity. Men were grouped according to achieving ≥150 min·wk of MVPA in bouts of ≥10 min (current guidelines) at two or three time points.
RESULTS: A total of 1419 ambulatory men had ≥600 min wear time on ≥3 d at ≥2 time points. At baseline, men took 4806 steps per day and spent 72.5% of their day in SB, 23.1% in light PA, and 4.1% in moderate-to-vigorous PA (MVPA). Mean change per year was -341 steps, +1.1% SB, -0.7% light PA, and -0.4% MVPA each day (all P 30 min increased from 5.1 by 0.1 per year (P = 0.02).
CONCLUSIONS: Among older adults, the steep decline in total PA occurred because of reductions in MVPA, while light PA is relatively spared and sedentary time and long sedentary bouts increase
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
A particle method for reproducing the phase space of collisionless stellar
systems is described. The key idea originates in Liouville's theorem which
states that the distribution function (DF) at time t can be derived from
tracing necessary orbits back to t=0. To make this procedure feasible, a
self-consistent field (SCF) method for solving Poisson's equation is adopted to
compute the orbits of arbitrary stars. As an example, for the violent
relaxation of a uniform-density sphere, the phase-space evolution which the
current method generates is compared to that obtained with a phase-space method
for integrating the collisionless Boltzmann equation, on the assumption of
spherical symmetry. Then, excellent agreement is found between the two methods
if an optimal basis set for the SCF technique is chosen. Since this
reproduction method requires only the functional form of initial DFs but needs
no assumptions about symmetry of the system, the success in reproducing the
phase-space evolution implies that there would be no need of directly solving
the collisionless Boltzmann equation in order to access phase space even for
systems without any special symmetries. The effects of basis sets used in SCF
simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To
be published in ApJ, Oct. 1, 1997. This preprint is also available at
http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm
Suppressed star formation in circumnuclear regions in Seyfert galaxies
Feedback from black hole activity is widely believed to play a key role in
regulating star formation and black hole growth. A long-standing issue is the
relation between the star formation and fueling the supermassive black holes in
active galactic nuclei (AGNs). We compile a sample of 57 Seyfert galaxies to
tackle this issue. We estimate the surface densities of gas and star formation
rates in circumnuclear regions (CNRs). Comparing with the well-known
Kennicutt-Schmidt (K-S) law, we find that the star formation rates in CNRs of
most Seyfert galaxies are suppressed in this sample. Feedback is suggested to
explain the suppressed star formation rates.Comment: 1 color figure and 1 table. ApJ Letters in pres
Universality of Probability Distributions Among Two-Dimensional Turbulent Flows
We study statistical properties of two-dimensional turbulent flows. Three
systems are considered: the Navier-Stokes equation, surface quasi-geostrophic
flow, and a model equation for thermal convection in the Earth's mantle. Direct
numerical simulations are used to determine 1-point fluctuation properties.
Comparative study shows universality of probability density functions (PDFs)
across different types of flow. Especially for the derivatives of the
``advected'' quantity, the shapes of the PDFs are the same for the three flows,
once normalized by the average size of fluctuations. Theoretical models for the
shape of PDFs are briefly discussed.Comment: 5 pages, 7 figure
Unquenched large orbital magnetic moment in NiO
Magnetic properties of NiO are investigated by incorporating the spin-orbit
interaction in the LSDA+U scheme. It is found that the large part of orbital
moment remains unquenched in NiO. The orbital moment contributes about mu_L =
0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the
orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values
are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure
Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability
We have investigated generation of magnetic fields associated with velocity
shear between an unmagnetized relativistic jet and an unmagnetized sheath
plasma. We have examined the strong magnetic fields generated by kinetic shear
(Kelvin-Helmholtz) instabilities. Compared to the previous studies using
counter-streaming performed by Alves et al. (2012), the structure of KKHI of
our jet-sheath configuration is slightly different even for the global
evolution of the strong transverse magnetic field. In our simulations the major
components of growing modes are the electric field and the magnetic
field . After the component is excited, an induced
electric field becomes significant. However, other field components
remain small. We find that the structure and growth rate of KKHI with mass
ratios and are similar.
In our simulations saturation in the nonlinear stage is not as clear as in
counter-streaming cases. The growth rate for a mildly-relativistic jet case
() is larger than for a relativistic jet case
().Comment: 6 pages, 6 figures, presented at Dynamical processes in space plasmas
II, Isradinamic 2012, in press, ANGEO. arXiv admin note: text overlap with
arXiv:1303.256
- …