87 research outputs found

    Syntactic Data Augmentation Increases Robustness to Inference Heuristics

    Full text link
    Pretrained neural models such as BERT, when fine-tuned to perform natural language inference (NLI), often show high accuracy on standard datasets, but display a surprising lack of sensitivity to word order on controlled challenge sets. We hypothesize that this issue is not primarily caused by the pretrained model's limitations, but rather by the paucity of crowdsourced NLI examples that might convey the importance of syntactic structure at the fine-tuning stage. We explore several methods to augment standard training sets with syntactically informative examples, generated by applying syntactic transformations to sentences from the MNLI corpus. The best-performing augmentation method, subject/object inversion, improved BERT's accuracy on controlled examples that diagnose sensitivity to word order from 0.28 to 0.73, without affecting performance on the MNLI test set. This improvement generalized beyond the particular construction used for data augmentation, suggesting that augmentation causes BERT to recruit abstract syntactic representations.Comment: ACL 202

    Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration

    Get PDF
    In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases

    Pregnancy outcomes in twin pregnancies over 10 years

    Get PDF
    Objective The aim of this study was to evaluate the changes in twin pregnancy outcomes between 2007 and 2016 in a Korean population. Methods The data for this nationwide population-based study was obtained from the national birth registry of the Korean National Statistical Office and the Health Insurance Review & Assessment Service of Korea. Women with twin pregnancies who gave birth between 2007 and 2016 were included. Results From 2007 to 2016, the rate of twin pregnancies increased (1.37% vs. 1.91%, respectively, P<0.0001). The risk of preterm birth (adjusted odds ratio [aOR], 1.77; 95% confidence interval [CI], 1.66–1.89) also increased; however, the risk of twin growth discordance (aOR, 0.90; 95% CI, 0.82–0.99) decreased. The risks of cesarean section (aOR, 1.16; 95% CI, 1.03–1.29), gestational diabetes mellitus (aOR, 2.10; 95% CI, 1.83–2.39), and postpartum hemorrhage (aOR, 1.27; 95% CI, 1.14–1.41) all increased from 2007 to 2016. Conclusion Twin pregnancy outcomes have changed significantly in Korea over a recent 10-year period

    Gemigliptin, a dipeptidyl peptidase-4 inhibitor, inhibits retinal pericyte injury in db/db mice and retinal neovascularization in mice with ischemic retinopathy

    Get PDF
    AbstractRetinal pericyte loss and neovascularization are characteristic features of diabetic retinopathy. Gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has shown robust blood-glucose lowering effects in type 2 diabetic patients, but its effects on diabetic retinopathy have not yet been reported. We evaluated the efficacy of gemigliptin on retinal vascular leakage in db/db mice, which is an animal model for type 2 diabetes, and neovascularization in oxygen-induced retinopathy (OIR) mice, which is an animal model for ischemic proliferative retinopathy. Gemigliptin (100mg/kg/day) was orally administered to the db/db mice for 12weeks. C57BL/6 mice on postnatal day 7 (P7) were exposed to 75% hyperoxia for 5days, followed by exposure to room air from P12 to P17 to induce OIR. Gemigliptin (50mg/kg/day) was intraperitoneally injected daily from P12 to P17. Retinal neovascularization was analyzed in flat-mounted retinas on P17. We determined the efficacy and possible mechanism of gemigliptin on high glucose-induced apoptosis of primary human retinal pericytes. The oral administration of gemigliptin for 4months significantly ameliorated retinal pericyte apoptosis and vascular leakage in the db/db mice. Gemigliptin also ameliorated retinal neovascularization in the OIR mice. Gemigliptin attenuated the overexpression of plasminogen activator inhibitor-1 (PAI-1) in the retinas of diabetic and OIR mice. Gemigliptin and PAI-1 siRNA significantly inhibited pericyte apoptosis by inhibiting the overexpression of PAI-1, which is induced by high glucose. Our results suggest that gemigliptin has potent anti-angiogenic and anti-apoptotic activities via suppressing DPP-4 and PAI-1, and the results support the direct retinoprotective action of gemigliptin
    corecore