3,637 research outputs found

    Electron-phonon coupling in metals at high electronic temperatures

    Get PDF
    Electron-phonon coupling, being one of the most important parameters governing the material evolution after ultrafast energy deposition, yet remains the most unexplored one. In this work, we applied the dynamical coupling approach to calculate the nonadiabatic electron-ion energy exchange in nonequilibrium solids with the electronic temperature high above the atomic one. It was implemented into the tight-binding molecular dynamics code, and used to study electron-phonon coupling in various elemental metals. The developed approach is a universal scheme applicable to electronic temperatures up to a few electron-Volts, and to arbitrary atomic configuration and dynamics. We demonstrate that the calculated electron-ion (electron-phonon) coupling parameter agrees well with the available experimental data in high-electronic-temperature regime, validating the model. The following materials are studied here - fcc metals: Al, Ca, Ni, Cu, Sr, Y, Zr, Rh, Pd, Ag, Ir, Pt, Au, Pb; hcp metals: Mg, Sc, Ti, Co, Zn, Tc, Ru, Cd, Hf, Re, Os; bcc metals: V, Cr, Fe, Nb, Mo, Ba, Ta, W; diamond cubic lattice metals: Sn; specific cases of Ga, In, Mn, Te and Se; and additionally semimetal graphite and semiconductors Si and Ge. For many materials, we provide the first and so far the only estimation of the electron-phonon coupling at elevated electron temperatures, which can be used in various models simulating ultrafast energy deposition in matter. We also discuss the dependence of the coupling parameter on the atomic mass, temperature and density.Comment: To be submitted for publicatio

    Predictions of hadron abundances in pp collisions at the LHC

    Get PDF
    Based on the statistical hadronization model, we obtain quantitative predictions for the relative abundances of hadron species in pp collisions at the LHC. By using the parameters of the model determined at sqrt s = 200 GeV, and extrapolating the overall normalization from ppbar collisions at the SPS and Tevatron, we find that the expected rapidity densities are almost grand-canonical. Therefore, at LHC the ratios between different species become essentially energy-independent, provided that the hadronization temperature T_H and the strangeness suppression factor gamma_S retain the stable values observed in the presently explored range of pp and ppbar collisions.Comment: 4 pages. Final version published in JP

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+ee^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    In situ imaging of domain structure evolution in labgeo5 single crystals

    Get PDF
    LaBGeO5 (LBGO) crystals are unique ferroelectric materials for manufacturing highly efficient UV laser sources based on frequency conversion. This is due to their low cut-off wavelength, high nonlinear-optical coefficients, and non-hygroscopicity. Periodical poling requires a deep study of domain kinetics in these crystals. Domain imaging by Cherenkov second harmonic generation microscopy was used to reveal the main processes of domain structure evolution: (1) growth and merging of isolated domains, (2) growth of stripe domains formed on the artificial linear surface defects, and (3) domain shrinkage. In a low field, growth of triangular domains and fast shape recovery after merging were observed, while in a high field, the circular domains grew independently after merging. The revealed essential wall motion anisotropy decreased with the field. The anisotropy led to significant shape transformations during domain shrinkage in low field. The formation of short-lived triangular domains rotated by 180 degrees with respect to the growing isolated domains was observed. The obtained results were explained within the kinetic approach to domain structure evolution based on the analogy between the growth of crystals and ferroelectric domains, taking into account the gradual transition from determined nucleation in low field to the stochastic one in high field. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 19-12-00210Funding: This research was funded by the Russian Science Foundation, grant number 19-12-00210

    Experimental investigation of high-energy photon splitting in atomic fields

    Get PDF
    The new data analysis of the experiment, where the photon splitting in the atomic fields has been observed for the first time, is presented. This experiment was performed at the tagged photon beam of the ROKK-1M facility at the VEPP-4M collider. In the energy region of 120-450 MeV, the statistics of 1.61091.6\cdot 10^9 photons incident on the BGO target was collected. About 400 candidates to the photon splitting events were reconstructed. Within the attained experimental accuracy, the experimental results are consistent with the cross section calculated exactly in an atomic field. The predictions obtained in the Born approximation significantly differ from the experimental results.Comment: 11 pages, 6 figures, LaTe

    Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method

    A Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy-ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
    corecore