5,022 research outputs found

    Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study

    Full text link
    We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch further the chains in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with "typical" bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead spring model.Comment: To appear in Journal of Physics Condensed Matter (2011

    Soleus stretch reflex during cycling

    Get PDF
    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms

    One- and two-particle microrheology

    Full text link
    We study the dynamics of rigid spheres embedded in viscoelastic media and address two questions of importance to microrheology. First we calculate the complete response to an external force of a single bead in a homogeneous elastic network viscously coupled to an incompressible fluid. From this response function we find the frequency range where the standard assumptions of microrheology are valid. Second we study fluctuations when embedded spheres perturb the media around them and show that mutual fluctuations of two separated spheres provide a more accurate determination of the complex shear modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur

    Competing Harvesting Strategies In A Simulated Population Under Uncertainty

    Get PDF
    We present a case study of the use of simulation modelling to develop and test strategies for managing populations under uncertainty. Strategies that meet a stock conservation criterion under a base case scenario are subjected to a set of robustness trials, including biased and highly variable abundance estimates and poaching. Strategy performance is assessed with respect to a conservation criterion, the revenues achieved and their variability. Strategies that harvest heavily, even when the population is apparently very large, perform badly in the robustness trials. Setting a threshold below which harvesting does not take place, and above which all individuals are harvested, does not provide effective protection against over-harvesting. Strategies that rely on population growth rates rather than estimates of population size are more robust to biased estimates. The strategies that are most robust to uncertainty are simple, involving harvesting a relatively small proportion of the population each year. The simulation modelling approach to exploring harvesting strategies is suggested as a useful tool for the assessment of the performance of competing strategies under uncertainty

    Fluctuations of a driven membrane in an electrolyte

    Full text link
    We develop a model for a driven cell- or artificial membrane in an electrolyte. The system is kept far from equilibrium by the application of a DC electric field or by concentration gradients, which causes ions to flow through specific ion-conducting units (representing pumps, channels or natural pores). We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain the membrane equation of motion within Stokes hydrodynamics. At steady state, the applied field causes an accumulation of charges close to the membrane, which, similarly to the equilibrium case, can be described with renormalized membrane tension and bending modulus. However, as opposed to the equilibrium situation, we find new terms in the membrane equation of motion, which arise specifically in the out-of-equilibrium case. We show that these terms lead in certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let

    Guiding principles for evaluating the impacts of conservation interventions on human well-being

    Get PDF
    Measures of socio-economic impacts of conservation interventions have largely been restricted to externally defined indicators focused on income, which do not reflect people's priorities. Using a holistic, locally grounded conceptualization of human well-being instead provides a way to understand the multi-faceted impacts of conservation on aspects of people's lives that they value. Conservationists are engaging with well-being for both pragmatic and ethical reasons, yet current guidance on how to operationalize the concept is limited. We present nine guiding principles based around a well-being framework incorporating material, relational and subjective components, and focused on gaining knowledge needed for decision-making. The principles relate to four key components of an impact evaluation: (i) defining well-being indicators, giving primacy to the perceptions of those most impacted by interventions through qualitative research, and considering subjective well-being, which can affect engagement with conservation; (ii) attributing impacts to interventions through quasi-experimental designs, or alternative methods such as theory-based, case study and participatory approaches, depending on the setting and evidence required; (iii) understanding the processes of change including evidence of causal linkages, and consideration of trajectories of change and institutional processes; and (iv) data collection with methods selected and applied with sensitivity to research context, consideration of heterogeneity of impacts along relevant societal divisions, and conducted by evaluators with local expertise and independence from the intervention

    Strong-Segregation Theory of Bicontinuous Phases in Block Copolymers

    Full text link
    We compute phase diagrams for AnBmA_nB_m starblock copolymers in the strong-segregation regime as a function of volume fraction Ï•\phi, including bicontinuous phases related to minimal surfaces (G, D, and P surfaces) as candidate structures. We present the details of a general method to compute free energies in the strong segregation limit, and demonstrate that the gyroid G phase is the most nearly stable among the bicontinuous phases considered. We explore some effects of conformational asymmetry on the topology of the phase diagram.Comment: 14 pages, latex, 21 figures, to appear in Macromolecule

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Interfaces in Diblocks: A Study of Miktoarm Star Copolymers

    Full text link
    We study ABn_n miktoarm star block copolymers in the strong segregation limit, focussing on the role that the AB interface plays in determining the phase behavior. We develop an extension of the kinked-path approach which allows us to explore the energetic dependence on interfacial shape. We consider a one-parameter family of interfaces to study the columnar to lamellar transition in asymmetric stars. We compare with recent experimental results. We discuss the stability of the A15 lattice of sphere-like micelles in the context of interfacial energy minimization. We corroborate our theory by implementing a numerically exact self-consistent field theory to probe the phase diagram and the shape of the AB interface.Comment: 12 pages, 11 included figure
    • …
    corecore