
Competing harvesting strategies in a simulated population under
uncertainty

INTRODUCTION

A major current focus in population management is how
best to ensure the sustainability of harvesting under
uncertainty. Approaches to this problem include creat-
ing no-take areas (Roberts, 1997; Allison, Lubchenco &
Carr, 1998; Mangel, 1998; Tuck & Possingham, 2000)
and active adaptive management (MacNab, 1983;
Walters, 1986; Parma et al., 1998). Another approach
uses simulation models as a model world within which
the performance of management strategies is explored
under a broad range of assumptions. Management strate-
gies are tested on a hidden population model, and their
robustness is probed with respect to different perfor-
mance criteria. This approach has received compara-
tively little attention outside the fisheries literature,
although fisheries scientists are increasingly aware of its
potential (Hilborn &Walters, 1992; Kirkwood & Smith,
1996; McAllister et al., 1999). The Scientific Committee
of the International Whaling Commission (IWC-SC)

used this approach when devising the Revised
Management Procedure for whale stocks (Cooke, 1995;
Kirkwood, 1997). Simulation trials can assess strategy
performance before risking a strategy on the population
itself, highlighting when strategies are most likely to fail.

We apply the IWC-SC’s methods to the saiga ante-
lope (Saiga tatarica) population of Betpak-dala,
Kazakhstan. The saiga is a nomadic species of the steppe
and semi-desert, harvested commercially for its meat,
hide and horns (Bekenov, Grachev & Milner-Gulland,
1998). This population was chosen because a long time
series of population size estimates and offtakes is avail-
able, as well as much biological information (Bekenov
et al., 1998). Population models have been developed
for the species and used to test a simple harvesting strat-
egy (Milner-Gulland, 1994, 1997).

We use performance indicators that distinguish vari-
ability within and between simulation runs, and explore
the effects of error and bias on the robustness of
management strategies. We do not attempt to carry out
full optimizations for particular harvesting strategies,
which would limit the applicability of the results to the
saiga antelope alone. Instead, we test a broad range of
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Abstract 
We present a case study of the use of simulation modelling to develop and test strategies for man-
aging populations under uncertainty. Strategies that meet a stock conservation criterion under a base
case scenario are subjected to a set of robustness trials, including biased and highly variable abun-
dance estimates and poaching. Strategy performance is assessed with respect to a conservation crite-
rion, the revenues achieved and their variability. Strategies that harvest heavily, even when the
population is apparently very large, perform badly in the robustness trials. Setting a threshold below
which harvesting does not take place, and above which all individuals are harvested, does not pro-
vide effective protection against over-harvesting. Strategies that rely on population growth rates rather
than estimates of population size are more robust to biased estimates. The strategies that are most
robust to uncertainty are simple, involving harvesting a relatively small proportion of the population
each year. The simulation modelling approach to exploring harvesting strategies is suggested as a use-
ful tool for the assessment of the performance of competing strategies under uncertainty.
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strategies, developed subjectively by different individu-
als on the basis of model outputs, using a range of
robustness trials. Having identified promising strategies,
the next stage would be to optimize them for the par-
ticular system under study, but that is not the focus of
this paper. Our approach avoids limiting the scope of the
management strategies considered to those that might
otherwise be considered a priori the best, hence allow-
ing us to uncover general heuristic principles for devel-
oping management strategies that are robust to
uncertainty.

METHODS

The first step is to choose a model for the dynamics of
the population. We used a model for saiga antelope pop-
ulation dynamics developed by Milner-Gulland (1994).
It is age- and sex-structured with fecundity and mortal-
ity rates varying according to the climate. The indepen-
dent probabilities of each year being good or bad are
estimated from the occurrences of each year type this
century. Fecundity rates vary according to a normal dis-
tribution, parameterized from Bekenov et al. (1998). The
model is not presented in detail here, because the
specifics of the underlying model are not the focus of
this paper; rather we concentrate on our approach to test-
ing management strategies.

The process took the form of a game, in which the
junior authors proposed strategies for harvesting the
saiga antelope over a 50 year period starting in 1994.
The strategies were required to fulfil the following man-
agement objectives: (1) maximize total discounted rev-
enues over the 50 year period; (2) minimize variability
in revenues; (3) fulfil a stock conservation constraint:
the probability of the population falling below 200,000
animals at any point during the 50 year period must 
be < 5%.

The stock conservation constraint reflects the require-
ment that the saiga population should remain large
enough for the probability of extinction to be negligible.
The choice of the threshold and the probability of falling
below it is subjective, reflecting the manager’s evalua-
tion of the saiga as a component of the ecosystem. A
common rule of thumb for the threshold population size
is 20% of the unexploited population size (Kirkwood &
Smith, 1996); the threshold used here is 20% of the max-
imum population size in the data.

The profitability objective is expressed in terms of
revenues because strategies differ in a non-trivial way
in their costs of implementation, and cost data do not
exist. The revenue obtained from a harvested saiga is the
value of the meat obtained plus the horns of adult males.
Revenues are discounted and the mean revenue over 50
years is calculated. The overall mean of the 50 year dis-
counted revenues from 500 simulations is taken as the
performance indicator for objective 1. The CV of rev-
enues over the 50 year period is calculated for each of
the 500 simulation runs, and the two indicators used for
objective 2 are the mean of the CVs, and the CV of the
CVs. The former measures variability within runs; keep-

ing variability over time low is important to minimize
social and economic instability for harvesters. A run of
good years may led to over-investment in the sector,
which may then be hard to withdraw in bad years, and
low predictability may deter investors. The latter mea-
sures variability between simulations, so is a measure of
the predictability of the strategy’s outcome. A strategy
with a very high between-runs variability would not be
ideal for use in real life, as it would be hard to predict
in advance how it would perform.

There is a tradeoff between maximizing revenues and
minimizing variability; however, this varies between
strategies. Thus strategy performance is given in terms
of all the above indicators, rather than as an integrated
summary statistic. However, all strategies were required
to pass the stock conservation test, objective 3. Because
only 500 runs were performed for each strategy, any
strategy for which the population fell below the thresh-
old in less than 7% of the runs was accepted. This
ensured that strategies were not failed solely owing to
sampling error.

The managers had access to all the data on saiga pop-
ulation biology, climate and harvests published in
Bekenov et al. (1998). Importantly, this publication does
not include information on the structure and parameter-
ization of the population model, which remained hidden
from the managers. This ensured the conceptual separa-
tion of the strategies and the model against which they
were tested.

Managers could base their strategy only on the infor-
mation which actual saiga managers have at their dis-
posal: an estimate of the population size and proportion
of adult males in the population in April of current and
previous years, and revenues and climatic conditions in
previous years. Using this information, the managers
developed strategies that each year recommended the
number of animals to be harvested, and their age and
sex ratios. The sequence of events each year is shown
in Fig. 1. Population counts are subject to varying
amounts of observation uncertainty and bias, and are not
necessarily performed every year. Thus observation
uncertainty is modelled through the flawed data that the
management strategy must use, while environmental
uncertainty is modelled through the probabilistic nature
of the underlying population model. The framework of
the process is shown in Fig. 2.

All strategies were tested under a simple ‘base case’
scenario, consisting of our best estimate of the parame-
ter values, with no biases in the observation errors and
no poaching (Table 1). Many strategies were submitted;
most failed to meet the criteria for success. Managers
were informed about the outcome of the tests and
allowed to revise their strategies, but were not informed
about other managers’ strategies, to ensure a broad range
of approaches was considered. Strategies that fulfilled
the stock conservation constraint were allowed to con-
tinue to the next round, regardless of their performance
against the other two objectives. Hopeless strategies
were rejected, while strategies which just failed to meet
the stock conservation constraint were revised. This
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crude optimization procedure ensured that all the strate-
gies continuing to the robustness trials had low enough
hunting mortalities to be counted as sustainable, while
not constraining strategy performance against other
objectives. This avoided rejecting strategies that might
be very robust despite giving low revenues in the base
case. Two rounds of strategy submission, ‘base case’
tests and refinement were carried out.

Robustness trials

The robustness trials (Table 1) were chosen both to
reflect the uncertainties that afflict the management of
the saiga antelope and to provide a severe test of the
strategies. Although ideally a wide range of indepen-
dently determined trials should be used, because of time
constraints we chose a few key trials addressing uncer-
tainties that are known to afflict saiga management.
Performance in the robustness trials was assessed against
all three management objectives, with the stock conser-
vation objective used as a simple measure of perfor-
mance rather than a constraint. This allowed
consideration of strategies which just failed the stock
conservation constraint, but nonetheless were worthy of
further investigation. The trials involved every combi-
nation of each of the scenarios listed in Table 1. This
required a very large number of trials to be run, but was
necessary for correct assessment of strategy perfor-
mance. Sensitivity analyses that simply change one vari-
able at a time are misleading because they cannot pick
up interactions between variables (Kremer, 1983;
Mangel, 1993). Interactions between variables were par-

ticularly important as we were attempting to identify
scenarios under which strategies are likely to fail, rather
than calculating the elasticity of results to single
variables.

RESULTS

Strategy development

Table 2 lists the management strategies satisfying the
stock conservation constraint in the base case, which
proceeded to the robustness trials. Strategies were rela-
tively consistent in their reliance on population size data
(Table 3). Some strategies used other data, such as the
climate in previous years or the proportion of adult males
in the population count, but were rejected. All the strate-
gies reaching the robustness trials used the most recent
population size estimate, and many calculated popula-
tion growth rates as a guide to the hunting mortality rate

159Harvesting strategies under uncertainty

Fig. 1. The saiga manager’s year. Winter mortality and births
are potentially density dependent, the latter being the base case
assumption. Mating success is constrained by male numbers;
a simple harem mating system is assumed, whereby if there
are more than 12 adult females per adult male, the surplus
females go unmated (Milner-Gulland, 1997). Poaching is
assumed to occur between the year’s hunting strategy being
decided and the legal harvest actually taking place; this max-
imizes the impact of poaching on the success of the hunting
strategy.

Fig. 2. A flow diagram showing the relationship between the
population model and the management strategy (based on
Cooke, 1995). Each year, the inputs to the management strat-
egy are the legal harvest data and the flawed abundance esti-
mates. The strategy uses these data in a set of explicit rules
to produce a number of animals that can be legally harvested.
Poaching is added to the harvest limit given by the manage-
ment strategy to give an actual harvest rate. This harvest rate
is fed into the population model, leading to an actual number
of animals killed through the population’s response to harvest.
The population is then censused, giving the next set of input
data to the management strategy. Unlike the data available to
the management strategy, the performance indicators are true
reflections of the state of the system, comprising the revenues
produced by the strategy and the true population size each
year. 



that could be applied. Unlike the IWC-SC strategies
(IWC-SC, 1993), those developed here were simple
models not based on statistical analysis of the data, and
relying on short time series of population size data. This
allowed us to draw broad generalizations about the
performance of different model types, but means that the
strategy set is unlikely to contain the optimal strategy.

Many strategies used a threshold population size
below which harvesting was prohibited, and some used
a cap on harvest rates. Simple harvesting theory suggests
that a hunting mortality rate proportional to population
size is less destabilizing, and can provide higher sus-
tainable yields, than harvesting the same number of indi-
viduals each year, and the results of these trials tend to
support this (see Hilborn & Walters, 1992 or Milner-
Gulland & Mace, 1998 for expositions; the result was
first identified in the 1970s). The decision rules used
were relatively simple and transparent, which can be a
major advantage in practical application. Strategies 9 and
10 were included specifically to test the performance of
the ‘rule of 3⁄4’ proposed by Roughgarden & Smith
(1996). These authors proposed that fish stocks should
be allowed to recover to 3⁄4 of their carrying capacity and
then be harvested in perpetuity at a constant rate, with
the aim of maintaining the population size at this level.
This rule was intended to be simple but extremely robust,
allowing sustainable harvesting with a sufficiently large
margin of error to be precautionary.

Base case performance

Strategy performance in the base case scenario is shown
in Fig. 3 and Table 4. The threshold probabilities are not
shown, because all the strategies had passed the stock
conservation constraint. A cluster of strategies per-
formed very well, giving high revenues with relatively
low within-run variability (strategies 0–3 at 10% hunt-
ing mortality, strategies 6, 12, 13; Fig. 3a); two per-
formed badly, giving low revenues and high within-run
variability (strategies 5 and 9). Apart from these two
strategies, there is no clear overall relationship between

revenues, within-run and between-run variability; it is
possible to have both high revenues and relatively low
variability in revenue, rather than having to trade them
off.

However, among the cluster of strategies producing
high revenues there is a strong positive relationship
between revenue and between-run variability, and an
inverse relationship between within-run and between-run
variability; within this cluster there is a trade-off
between predictability within simulations, revenues, and
predictability between simulations. If the population is
able to recover from its low level at the beginning of the
simulation, owing to favourable values of the stochastic
parameters in a given run, it is able to withstand heavy
harvesting and produce high revenues. Otherwise, if the
early years are poor, the population quickly falls below
the threshold under heavy harvesting. Discounting leads
to revenues produced early in the simulation having most
influence on mean revenues, weighting in favour of early
heavy harvesting. Thus a strategy that harvests heavily
regardless of population size (e.g. S0b) has both high
between-run variability, high mean revenues, and lower
within-run variability, while a strategy with a harvest
rate that tracks population size (e.g. S13) has higher
within-runs variability. This trade-off means it is not
possible to pick a clear best strategy in the base case
scenario, only to suggest that it is likely to be chosen
from within the cluster of high-revenue strategies.

Overall performance in robustness trials

Figure 4 summarizes the overall performance of the
strategies in the robustness trials. There is a weak pos-
itive relationship between the probability of the popula-
tion falling below the threshold size and the revenues
obtained from hunting, because high hunting mortalities
both give high revenues and cause population decline
(Fig. 4a). Strategy 9 (an implementation of the rule of
3⁄4) produces inordinately low revenues given its thresh-
old probability. The best strategies, from Fig. 4a, are
those producing high revenues while still fulfilling the
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Table 1. The alternative scenarios to which strategies were subjected in the robustness trials. The base case scenario is given in bold.

Model component Scenarios

Population model Base carrying capacity (K) is 1 million, 2 million.
Linear trend in K to 1.5 or 0.5 of base, or stays at base.
Density dependence acts on neonatal survival or whole population in winter.

Abundance and sex ratio estimates Abundance estimates are consistent under- or overestimates, or are accurate. Estimate multiplied 
by 0.5, 1, 1.5.

Bias in abundance estimates increases or decreases linearly with time. 1 – 0.5 and 1 – 1.5, or no 
bias. 

Abundance estimate every year or in only 50% of years.
Error in abundance and sex ratio estimates is CV = 20%, CV = 40%.

Economic variables Discount rates 0% and 5%. 
Price differential between horns and meat: horns 100×× and 10× more expensive per kilo than 

meat.
Poaching Poaching at 0%, 50% and 100% of legal hunting or 2.5%, 5% of actual population size.

Poachers hunt unselectively or the chance of being hunted by a poacher is proportional to the 
revenues obtainable from the animal.



stock conservation constraint; these are the cluster of
strategies 0–3 at 4% hunting mortality. The within-run
and between-run variabilities are plotted for the best-per-
forming strategies in Fig. 4b. Again, there is an inverse
relationship between the two measures of revenue sta-
bility.

The difference between the outcomes of the base case
and robustness trials varies from strategy to strategy, and
between performance indicators (Table 4). Some strate-

gies performed noticeably better in the ranking of thresh-
old probabilities in the robustness trials than in the base
case (strategy 1 at 4%, strategy 5), others were much
worse (strategies 6, 9). These changes in performance
indicate how robust the strategies are to external factors.
The cluster of strategies 0–3 performs well in the base
case at high hunting mortalities and indifferently at low
hunting mortalities (Fig. 3). By contrast, in the robust-
ness trials the high hunting mortalities perform very
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Table 2a. Strategies tested in the robustness trials. E = Estimated population size last year. If there was no count last year, E = 0. T = thresh-
old population size. R = Population growth rate; Et-1/Et-2. G = Logarithmic growth rate; ln(Et-1)/ln(Et-2). Strategies 4a–c, 5a, 8a, 12a are less
successful variants of very similar strategies, and are therefore not discussed further.

Strategy Rules

S0 Harvest (a) 4% or (b) 10% of population, 100% males in harvest. If no count, no hunting.
S1 T = 250,000. The harvest must never reduce the estimated population size below T. If E > T, take either (a) 4% or (b) 10% of

E-200,000, 100% males. If no count, no hunting.
S2 T = 250,000. If R > 1 take (a) 4% or (b) 10% of E-200,000, otherwise take 50% of this percentage of E-200,000, 100% males.

If no count this year, no hunting. If no count last year, use the last available count to calculate R.
S3 Starting hunting mortality is (a) 4% or (b) 10%, 100% males. Every 3 years, calculate mean G for the 3 year period. If mean

G ≤ 1 reduce hunting mortality by 50% for the next 3 years. Otherwise keep hunting mortality at the original level. If a year
has no count, any G involving that year is zero.

S4 T = 300,000. The harvest must never reduce the estimated population size below T. At time t = 1, if R > 1, take 50,000 ani-
mals, otherwise take 30,000 animals. At time t > 1, if R > 1 increase harvest by 10,000 animals, if R < 1 reduce harvest by 
10,000 animals. Harvest may not exceed 0.2*(E-200,000). 100% males. If no count, no hunting. If no count in a previous
year, use most recent available count.

S4a T = 300,000. The harvest must never reduce the estimated population size below T. At time t = 1, if R > 1, take 50,000 ani-
mals, otherwise take 30,000 animals. At time t > 1, if R > 1 increase harvest by 10,000 animals, if R < 1 reduce harvest by
10,000 animals. Harvest may not exceed 100,000 animals. 100% males. If no count, no hunting. If no count in a previous
year, use most recent available count.

S4b Same as 4, but start at 60% male in the harvest (females and juvenile proportions as in population). At each time-step, if
R > 1, increase proportion of males by 5%, up to a maximum of 95%. If R ≤ 1, reduce proportion of males by 5%.

S4c Same as 4a, but start at 60% male in the harvest (females and juvenile proportions as in population). At each time-step, if
R > 1, increase proportion of males by 5%, up to a maximum of 95%. If R ≤ 1, reduce proportion of males by 5%.

S5 Start with 6% hunting mortality. Calculate mean G as a 3 year running mean. If mean G > 1.02, increase hunting mortality by
1%, if mean G < 1.01, decrease hunting mortality by 1%, otherwise leave it the same. 100% males. If a year has no count,
any mean G involving that year is zero.

S5a Same as above but calculate mean G every 3 years rather than as a running mean.
S6 Calculate number of juveniles and adult females (Nj+f) = total count (N) – adult males (Nm). Calculate the number of adult

females in the population (Nf): Following a poor winter Nf = 0.4*Nj+f. Following a good winter Nf = 0.3*Nj+f. Calculate the
total number of adults in the population Na=Nf+Nm. Do not cull below T (Na = 375,000). Above T, p = 0.0006(Na/1000) +
0.02. Calculate t=p*N to estimate how many to kill. Calculate from the spring count y = (Nf / Nm) * 0.2. Harvest yt / (1+y)
females and t/(1+y) males. If there are no count data in the spring prior to the cull remove 20,000 females and 20,000 males.

S7 If E > 300,000 then cull 50,000 individuals. 90% males in cull. Proportion of females and juveniles as in the population. If no
count, no hunting.

S8 T = 300,000. If E > T, kill 20,000 adult males. If no count, no hunting.
S8a T = 220,000. If E > T, kill 10,000 adult males. If no count, no hunting.
S9 T = 0.75K. If E > T then kill E–T animals, only adults. Males in the sex ratio found in the population, females the rest. If no

count, no hunting.
S10 Do not hunt for 5 years. After 5 years, or after 5 counts are available (whichever is the longer), calculate the mean R. Find

r = ln(mean R). Harvest in perpetuity at a rate of 0.25r, unselectively.
S11 Harvest in year 1 (H1) is 18,000. In subsequent years, Ht+1 = Ht × R. Harvest only adults, 70% male, 30% female. If no count

in either the current or previous year, no hunting.
S12 Harvest is 90% males, harvest females and juveniles unselectively. Initial harvest mortality is 5%. Calculate the fraction har-

vested (Ht) in subsequent years as: Ht = Ht-1 * (Et + 0.7E t-1 + 0.5E t-2)/(Et-1 + 0.7E t-2 + 0.5Et-3). For t < 3, use the historical
counts. If there are no counts in certain years, use the most recent available counts. Bound Ht between 2% and 10%, and
bound the change in hunting mortality (Ht/Ht-1) between 0.6 and 1.25.

S12a Same as 12 but bound the change in hunting mortality (Ht/Ht-1) between 0.8 and 1.1.
S13 Do not harvest until you have the first three population estimates. Then for each year with a new population estimate select this

count and the two previous counts. Scale the earliest of the three estimates to year zero and scale the other years accord-
ingly. Divide the total number of individuals estimated to be in the population by 1000. Fit a regression line through these
three points. Harvest rates are determined by residual pattern, slope and intercept of the regression line (see Table 2b). If
there is no population estimate: If you harvested in the year when the population was last estimated remove 4% of animals,
100% males. If you did not harvest in the year when the population was last estimated remove 1.5% of animals, 100% males.

S14 Start harvesting at 8%, with 90% males, 10% females. Harvest no juveniles. T = 300,000. If E ≤ T, reduce hunting mortality
by 50% for 1 year. Otherwise, calculate a 3 year running mean growth rate. If counts are not available in a particular year,
ignore that year. If mean G > 1.01, increase hm by 1%, if mean G < 1 decrease hm by 1.5%. If the estimated proportion of
males in the population is < 1/12, reduce male proportion in harvest by 10%. If it is > 0.5, increase male proportion by 10%.



poorly, the low hunting mortalities very well (Fig. 4).
Strategies 12 and 13 do not fulfil the stock conservation
constraint under the robustness trials but none the less
perform relatively well.

A key predictor of a strategy’s overall performance is
the proportion of males in the harvest. Generally strate-
gies perform well in terms of both the revenues produced
and the threshold criterion if they harvest mostly males.
This is because saiga males are particularly valuable for
their horns, as well as providing more meat than females.
They also do not contribute to the population growth rate
in the model until the ratio of adult males to adult
females is ≤ 1/12, because saigas are harem breeders.
There are no other simple indicators of strategy perfor-
mance, so in order to elucidate the factors affecting per-
formance, we now examine the individual robustness
trials.

Factors affecting strategy performance

The robustness trials assess strategy performance under
a severe but realistic range of challenges (Table 1). We
examine the results only in terms of the effect on thresh-
old probability (the probability of falling below the
threshold population size of 200,000), rather than the
other performance indicators. This is because the thresh-
old probability is the indicator most closely related to
strategy sustainability. The factors that most affect the
strategies’ threshold probabilities are poaching and
biased abundance estimates.

Two kinds of poaching were tested; poaching inde-
pendent of the strategy’s harvesting rate and poaching
linked to the strategy’s harvesting rate. The former tends
to have a more severe effect on threshold probability
than the latter, because when strategies compensate for
reductions in population size, the linked poaching does
so too. However, if strategies do not compensate for
reduced population size they are more strongly affected
by linked poaching; for example strategies 7 and 9,
which harvest a number of individuals, rather than a
proportion of the population. Table 5 shows how poach-
ing of each kind affects the threshold probabilities of
each strategy; strategy 13 is the most robust to poach-
ing. Some strategies appear to perform well because their
legal hunting mortality is so high that poaching is a com-
paratively minor source of mortality (S0–S3 at 10%),
while the converse is true for S1 and S2 at 4%.

Consistent overestimation of population size is a
major problem for many strategies; this was also the case
in the IWC-SC trials (Cooke, 1995). Strategies that har-
vest a relatively large proportion of the population are
sensitive to this (S1 and S2 at 10%, Table 5). Strategies
that rely on threshold populations above which harvests
are allowed are also more susceptible to bias (S9). The
strategies that are least susceptible to bias are those
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Table 2b. The decision rules for strategy 13. In each cell, the first
figure is the proportional hunting mortality, the second is the pro-
portion of males among the harvested individuals. 
(i) Residual pattern + – +

Slope <–35 –35 ≤ x ≤ 35 >35  

INTERCEPT
<400 0 0 0.03,1  
400 ≤ x ≤ 1000 0 0.05,1 0.09,0.9  
>1000 0.06,1 0.12,0.9 0.15,0.9  

(ii) Residual pattern – + –

Slope <–35 –35 ≤ x ≤ 35 >35  

INTERCEPT
<400 0 0 0  
400 ≤ x ≤ 1000 0 0.04,1 0.06,0.9  
>1000 0.06,1 0.1,0.75 0.15,0.75  

Table 3. Methods employed and information used by the strategies to control harvest rates. The methods are: a threshold below which the
population may not fall (Threshold), a cap on the total number of individuals that can be harvested in a year (Cap), a hunting mortality rate
proportional to the population size (Propnl hm), harvesting a given number of individuals (Number). All strategies used the latest population
size estimate. The other types of information used are: the growth rate of the population (Growth rate), the number of years of population
size estimates used (No. years), and the sex ratio of the population (Sex ratio). Some strategies had harvest rates that changed as the strategy
learnt more about the system (Learning); the others had their harvest rates for each state of the system fixed from the start. Performance is
shown as the mean probability of the strategy causing the population to fall below 200,000 at any point in the 50 year simulation, averaged
over all the robustness trials (Threshold prob), and the mean discounted revenues over the 50 year period, averaged over all the robustness
trials (Revenue, shown in million roubles). The results for strategies 0–4 are shown for a 4% hunting mortality.

Strategy Threshold Cap Propnl hm Number Growth rate No. years Sex ratio Learning Threshold prob Revenue

0 X 1 0.07 1.17
1 X X 1 0.04 0.97
2 X X X 2 0.05 1.06
3 X X 3 0.06 0.92
4 X X X X 2 X 0.08 0.57
5 X X 3 X 0.07 1.90
6 X X X 1 X 0.38 1.12
7 X X 1 0.27 1.00
8 X X 1 0.05 0.57
9 X 1 X 0.23 0.47

10 X X 5 X 0.07 0.24
11 X X 2 0.32 1.02
12 X X X X 3 X 0.10 1.53
13 X X 3 0.11 1.49
14 X X X 3 X X 0.09 0.37



which rely on population growth rates rather than actual
population size estimates to calculate their hunting mor-
talities (S3 at 4%, S5).

The strategies are generally not sensitive to a doubling
of the CV of abundance and sex ratio estimates. Strategy
9 is most sensitive because it has a threshold above
which all individuals are harvested; if by chance abun-
dance estimates are seriously inflated one year, massive
over-harvesting can take place. Several strategies of this
type were eliminated early on; strategy 9 was the only
one to proceed to the robustness trials, because the
threshold is so high. The major effect of changes in dis-
count rate is on revenues rather than threshold proba-
bilities; strategies that obtain a comparatively large
proportion of their revenues early in the simulation are
less affected by a reduction in discount rate. The results
are generally not sensitive to changes in carrying capac-
ity because the population size at the start of the simu-
lation is well below both the Ks tested. The effect of not
counting the population in 50% of years depends on how
the strategies deal with missing abundance estimates. In
most cases, they are very precautionary, either not hunt-
ing or hunting at a much lower rate in these years, thus
the probability of failing the stock conservation criterion
tends to reduce slightly when counts are missing. The
age group at which density dependence acts has little
effect on the result, nor does a change in the relative
prices of meat and horns.

DISCUSSION

Although the strategies tested here are all relatively sim-
ple, their responses to bias, high levels of uncertainty,
trending variables and poaching vary greatly. We have

shown that the performance of a management strategy
under a ‘best guess’ scenario is not an adequate guide
to its performance under more realistic conditions of
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Table 4. Ranking of the performance of each strategy in the base case and of overall performance in the robustness trials (the mean of the
performances in each trial); in each case, 1 is the best performance, 19 is the worst performance. Strategies that perform well have low prob-
abilities of falling below the threshold population size, low within-run and between-run variabilities, but high revenues. The strategies whose
overall performance in the robustness trials fulfils the stock conservation constraint (a probability of ≤ 0.07 of the population going below
200,000 individuals) are shown in bold.

Base case Overall

Strategy Threshold Revenue Within-run Between-run Threshold Revenue Within- Between-run 
var var run var var

S0 (4%) 11 8 1 14 6 7 3 14
S1 (4%) 18 12 5 8 1 12 7 5
S2 (4%) 4 14 11 5 2 9 2 4
S3 (4%) 1 11 6 6 4 13 4 11
S0 (10%) 13 1 4 19 19 3 14 12
S1 (10%) 10 3 6 15 12 2 10 9
S2 (10%) 4 7 12 7 13 1 5 8
S3 (10%) 16 2 8 17 16 6 11 13
S4 7 13 10 13 8 15 12 7
S5 14 18 18 1 7 19 18 1
S6 7 6 16 2 18 8 17 6
S7 16 10 14 10 15 11 15 15
S8 1 16 13 11 3 14 6 16
S9 1 17 19 3 14 16 19 18
S10 4 19 2 16 5 18 1 17
S11 19 9 3 18 17 10 8 19
S12 15 5 9 12 10 4 9 10
S13 11 4 15 9 11 5 13 3
S14 7 15 17 4 9 17 16 2

Table 5. A ranking of the sensitivity of the strategies to poaching and
bias in abundance estimates. For each scenario, the deviation of the
threshold probability with poaching from the threshold probability
without poaching was calculated ((probability with poaching – prob-
ability without poaching)/probability without poaching), and similarly
for bias. The deviations were then ranked from the smallest magni-
tude deviation at rank 1 to the largest at rank 19. The rank shown
here is the strategy’s overall average rank for each group of scenar-
ios; poaching independent of the strategy (at a rate of 0.025 and 0.05,
selective and unselective) and linked to the strategy (at a rate of 50%
and 100% of the strategy’s hunting mortality, selective and unselec-
tive), and a constant level of bias (at 1.5 and 0.5) and trended bias
(to 1.5 and 0.5). This ranking gives an indication of the relative robust-
ness of the strategies; 1 is the best performer, 19 the worst.

Poaching Bias  

Strategy Independent Linked Constant Trended 

S0 (4%) 14 14 3 6
S1 (4%) 19 1 3 5
S2 (4%) 18 3 6 4
S3 (4%) 17 10 2 3
S0 (10%) 2 9 13 15
S1 (10%) 5 4 18 18
S2 (10%) 4 6 17 16
S3 (10%) 7 12 14 13
S4 10 15 15 10
S5 13 18 5 1
S6 5 13 8 14
S7 9 19 15 10
S8 15 5 8 7
S9 1 8 19 18
S10 10 6 7 12
S11 8 11 1 8
S12 12 16 11 9
S13 3 1 12 16
S14 15 16 10 1



uncertainty, and that the strategies perform differently
depending on the criteria by which they are assessed.
Testing strategies over a wide range of plausible
scenarios reveals that those which at first sight appear
to be ideal may in fact perform badly (e.g. S0b). Despite
this, it is rare for modellers to test their strategies under
a broad range of robustness trials, rather than with sin-
gle-parameter sensitivity analyses, and even rarer for
people to compare the performances of several different
strategies.

We use two indicators of variability in revenues: vari-
ability between and within runs. These indicators have
very different policy implications; the former measures
the predictability of the results between different real-
isations, the latter the variability of revenues over time.

We show that the two indicators are generally inversely
related to one another, but that performance measured
on one indicator is a poor predictor of performance on
the other (Table 4). Both indicators are important for
assessing strategy performance.

Our study is purposefully subjective, with individual
‘managers’ competing in a game to harvest a simulated
population under uncertainty. This approach was used to
maximise the diversity of strategies produced. We use
only one population model and one set of management
objectives. Therefore our specific conclusions relate only
to this case study. Furthermore, ours is a broad
exploratory analysis not designed to make concrete rec-
ommendations for the management of a particular
resource. Before making such recommendations, eco-
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Fig. 3. The performance indicators for the strategies under the base case scenario (Table 1). The strategies are numbered as in
Table 2, with strategies 0–3a involving a 4% hunting mortality, and strategies 0–3b involving a 10% hunting mortality. The
strategies that pass the stock conservation criterion (those with an overall mean probability of ≤ 0.07 of going below the thresh-
old population size at any point during the 50 year period) are shown in bold. (a) The mean discounted 50 year revenue against
the within-run variability of the strategies. (b) The between-run variability against the within-run variability of the strategies.
Within-run variability is measured as the mean CV of the revenues; between-run variability is measured as the CV of the CVs
of the revenues.



nomic and social issues (such as the costs of imple-
mentation and enforcement, strategy acceptability and
practicability) would have to be fully investigated,
along with a more systematic analysis of management
options.

The performance criteria against which management
strategies are assessed, and the importance that managers
attach to particular objectives, depend on the social goals
of policy makers. Thus any overall ranking of strategies
depends on the particular situation; both on the factors
affecting the population (such as poaching or biased
abundance estimates), and on the manager’s aims.

However, once managers have decided on their objec-
tives, the best strategy can be chosen using subjective
weighting of the performance indicators or tools such as
multi-criteria analysis. A very simple example of such
a procedure is shown in Table 6.

Although some of our findings are specific to the saiga
antelope, for example the importance of harvesting a rel-
atively high proportion of males, many of the issues we
highlight are much more general. In particular, we car-
ried out extensive testing of the ‘rule of �’, which was
proposed by Roughgarden & Smith (1996) as a robust
and precautionary approach to fisheries management in
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Fig. 4. The performance indicators for the strategies under the robustness trials. The strategies are numbered as in Table 2,
with strategies 0–3a involving a 4% hunting mortality, and strategies 0–3b involving a 10% hunting mortality. The strategies
that pass the stock conservation criterion (those with an overall mean probability of ≤ 0.07 of going below the threshold pop-
ulation size at any point during the 50 year period) are shown in bold. (a) The overall mean probability of falling below the
threshold population size plotted against the overall mean revenue. (b) The within-run variability against the between-run vari-
ability, plotted for the best-performing strategies only (those with a probability of falling below the threshold of < 0.15). Within-
run variability is measured as the mean CV of the revenues; between-run variability is measured as the CV of the CVs of the
revenues.



the face of uncertainty. We included two realizations of
the strategy; one (S9) had access to the exact value of
the carrying capacity of the population at the beginning
of the simulation, the other (S10) declared a 5 year mora-
torium and estimated the number of individuals to be
harvested from the population growth rate during that
time. Strategy 8 is also similar in spirit to the sugges-
tions of Roughgarden & Smith (1996), harvesting a con-
stant small number of individuals whenever the
population exceeds a threshold. The performance of
strategies that harvest a small number of individuals each
year (S8, S10) is excellent on the stock conservation cri-
terion, but very poor in terms of the revenues obtained
and variability between runs. These conservative strate-
gies have the advantage of simplicity and robustness in
implementation and could be useful if revenues were not
a prime concern of managers. However, the revenues
produced are much lower than those of some of the other
strategies, including some which performed very well on
the robustness trials. 

Strategy 9, which involves harvesting all individuals
above a threshold of 3⁄4K, also appears to be a conserv-
ative strategy. However, it both provides low revenues
and performs very badly on the stock conservation cri-
terion. One problem is that there is no reassessment once
the harvest rate has been fixed, which is problematical
under conditions where K or the biases in population
estimates are trending. Another problem is that setting
a zero quota below 3⁄4K and harvesting all individuals
above this level leads to a serious risk of over-harvest
under uncertainty. Lande, Engen & Saether (1995) found
from theoretical models that harvesting all individuals
above a threshold and none below is the optimal strat-
egy for maximizing yields from fluctuating populations.
Our results contradict these findings, suggesting that the

reason for Lande et al.’s (1995) result is that they assume
that the population size is known. Further work by
Engen, Lande & Saether (1997) showed that when pop-
ulation estimates are uncertain, harvesting a proportion
of the difference between a threshold population size and
the estimated population size is a better option. This
coincides with our findings: a proportional threshold
strategy (S1) performed well, but simple threshold strate-
gies performed very badly. This suggests that strategies
involving harvesting all individuals above a threshold
are of very limited use in the management of real
populations.

Strategies that used population growth rates were
more resistant to bias than those using population esti-
mates as a basis for calculating harvest rates. Those
using proportional hunting mortalities were good robust
performers, particularly if they reduced hunting mortal-
ity for a time if the population growth rate became neg-
ative (S2, S3). The simplest strategy of all (harvest a set
proportion of the population each year regardless of
population size) is perhaps the best performer at low
hunting mortalities, but the worst at high hunting mor-
talities. Generally, we found that strategies that did well
never harvested heavily, even when the population was
(apparently) very large; the IWC-SC also found this
(Cooke, 1995).

The relative success of simple strategies brings into
question the value of complex strategies, which may be
more susceptible to error and bias. Simple strategies are
often more robust to uncertainty than strategies based on
models whose assumptions are likely to be broken, even
when these models are empirical in origin. Ludwig &
Walters (1985) found that a simple model was at least
as good as a more complex one at estimating optimal
fishing effort, even though the data had been generated
by the more complex model in the first place. However,
simple strategies do have the disadvantage that they do
not allow managers to learn about the system.

In this study, we evaluated the performance of a range
of management strategies in a simulated population
under realistic levels of uncertainty. We used a decision
analysis framework for the study, a key component of
which is the initial formulation of clear objectives
against which strategy performance can be assessed. Our
major finding is that the best performing strategies are
very simple, involving harvesting a small proportion of
the population each year. Previous theoretical results,
suggesting that the best approach to harvesting popula-
tions under uncertainty is to harvest all individuals above
a threshold, do not stand up under more realistic condi-
tions. We show that the performance of a strategy under
the best estimate of parameter values is not an adequate
representation of its performance under a feasible range
of parameter values. We suggest that performance
should be evaluated in terms of the variability of rev-
enues between simulation runs as well as within runs,
because strategies perform differently under these two
measures and they have different policy implications.

Although most of these results have been found indi-
vidually in previous work, they are not all as widely
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Table 6. A simple assessment of overall strategy performance on each
of the four performance indicators, with an overall ranking assuming
that each indicator has equal weight for the manager’s decision-mak-
ing. Three stars is the best performance, down to a zero for the worst
performance. 

Strategy Threshold Revenue Within Between Overall
run run

S0 (4%) * * * * * * * * * *  
S1 (4%) * * * * * * * * * *  
S2 (4%) * * * * * * * * * * * * * *  
S3 (4%) * * * * * * * * *  
S0 (10%) 0 * * * * * *  
S1 (10%) * * * * * * * * * *  
S2 (10%) * * * * * * * * * *  
S3 (10%) 0 * * * * *  
S4  * * * * * * * (*)  
S5  * * 0 0 * * * *  
S6 0 * * 0 * * *  
S7 0 * 0 * (*)  
S8 * * * * * * 0 * (*)  
S9 * 0 0 0 0  
S10 * * * 0 * * * 0 * (*)  
S11 0 * * * * 0 *  
S12 * * * * * * * * * * *  
S13 * * * * * * * * * *  
S14 * * 0 0 * * * *  



appreciated as they should be. Our results contradict the
recommendations of other high-profile studies, many of
which are derived from rather general models with no
particular species or problem in mind. Our work has
shown that these recommendations may not be at all pre-
cautionary under realistic uncertainty. This exploratory
study suggests that the simulation model approach is a
valuable tool for the exploration of harvesting strategies
under uncertainty. It is a flexible and powerful method
that could have wide applicability for the management
of populations under uncertainty.
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